Skip to main content

Self-assembled Hydrogels: An Overview

  • Chapter
  • First Online:
Nano Hydrogels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Self-assembled hydrogels are a three-dimensional network of polymeric materials that are self-assembled either by physical or chemical crosslinking. Excellent biocompatibility, biodegradability, and sensitivity towards physiological stimulus make these materials as the best candidate for tissue culture, drug delivery, and development of sensors that can be. implanted on the human body. Whereas, versatile bonding that exists between the polymeric chain and water molecules and its ability to chelate metal ions extends its applications to photovoltaics and optics. This chapter focusses on the classification of self-assembled hydrogels based on their source and the nature of crosslinking force. The hydrogels formed by the self-assembly of biomolecules and the various factors governing their self-assembly like coiled-coil motifs, beta sheets, and beta-hairpin were discussed in the part, which was followed by a discussion synthetic hydrogels and their three different categories based on their nature of crosslinking force. Self-assembled hybrid hydrogels that are developed by the two distinct types of molecules are also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  Google Scholar 

  2. Chen X et al (2018) Supramolecular hydrogels cross-linked by preassembled host–guest PEG cross-linkers resist excessive, ultrafast, and non-resting cyclic compression. NPG Asia Mater 10:788–799

    Article  CAS  Google Scholar 

  3. Kopeček J, Yang J (2009) Peptide-directed self-assembly of hydrogels. Acta Biomater 5:805–816

    Article  CAS  Google Scholar 

  4. Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192

    Article  CAS  Google Scholar 

  5. Xu C, Kopeček J (2007) Self-assembling hydrogels. Polym Bull 58:53–63

    Article  CAS  Google Scholar 

  6. Kaneko T, Yamaoka K, Gong JP, Osada Y (2000) Liquid crystalline hydrogels. 2. Effects of water on the structural ordering. Macromolecules 33:4422–4426

    Article  CAS  Google Scholar 

  7. Wu ZL, Gong JP (2011) Hydrogels with self-assembling ordered structures and their functions. NPG Asia Mater 3:57–64

    Article  Google Scholar 

  8. Lin BF et al (2012) pH-responsive branched peptide amphiphile hydrogel designed for applications in regenerative medicine with potential as injectable tissue scaffolds. J Mater Chem 22:19447

    Article  CAS  Google Scholar 

  9. Kyle S, Aggeli A, Ingham E, McPherson MJ (2009) Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol 27:423–433

    Article  CAS  Google Scholar 

  10. El Yaagoubi M, Tewari KM, Lau KHA (2018) Peptoid self-assembly and opportunities for creating protein-mimetic biomaterials and biointerfaces. In: Self-assembling biomaterials. Elsevier. https://doi.org/10.1016/b978-0-08-102015-9.00006-x

  11. Lao UL, Sun M, Matsumoto M, Mulchandani A, Chen W (2007) Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. Biomacromolecules 8:3736–3739

    Article  CAS  Google Scholar 

  12. Xu C, Breedveld V, Kopeček J (2005) Reversible hydrogels from self-assembling genetically engineered protein block copolymers. Biomacromolecules 6:1739–1749

    Article  CAS  Google Scholar 

  13. Riaz N, Wolden SL, Gelblum DY, Eric JA (2016) Rate insensitive linear viscoelastic model for soft tissues. Biomater 118:6072–6078. https://doi.org/10.1002/cncr.27633

  14. Kopeček J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed 51:7396–7417

    Article  CAS  Google Scholar 

  15. Zhu F et al (2018a) Tough and conductive hybrid hydrogels enabling facile patterning. ACS Appl Mater Interfaces 10:13685–13692

    Article  CAS  Google Scholar 

  16. Zhu S et al (2018b) Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J Mater Chem B6:2650–2676

    Google Scholar 

  17. Rosenblatt J, Devereux B, Wallace DG (1994) Injectable collagen as a pH-sensitive hydrogel. Biomaterials 15:985–995

    Article  CAS  Google Scholar 

  18. Yonath J, Oplatka A (1968) Mechanochemical melting of collagen fibers. I. Mechanical contractions. Biopolymers 6:1129–1145

    Article  CAS  Google Scholar 

  19. Oplatka A, Yonath J (1968) Mechanochemical melting of collagen fibers. II. Diffusion-controlled contractions. Biopolymers 6:1147–1158

    Article  CAS  Google Scholar 

  20. Censi R, Di Martino P, Vermonden T, Hennink WE (2012) Hydrogels for protein delivery in tissue engineering. J Control Release 161:680–692

    Article  CAS  Google Scholar 

  21. Mason JM, Arndt KM (2004) Coiled coil domains: stability, specificity, and biological implications. ChemBioChem 5:170–176

    Article  CAS  Google Scholar 

  22. Truebestein L, Leonard TA (2016) Coiled-coils: the long and short of it. BioEssays 38:903–916

    Article  CAS  Google Scholar 

  23. Nowick JS (2008) Exploring beta-sheet structure and interactions with chemical model systems. Acc Chem Res 41:1319–1330

    Article  CAS  Google Scholar 

  24. Aggeli A et al (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA 98:11857–11862

    Article  CAS  Google Scholar 

  25. Clarke DE, Pashuck ET, Bertazzo S, Weaver JVM, Stevens MM (2017) Self-healing, self-assembled β-sheet peptide-poly(γ-glutamic acid) hybrid hydrogels. J Am Chem Soc 139:7250–7255

    Article  CAS  Google Scholar 

  26. Clarke DE, Parmenter CDJ, Scherman OA (2018) Tunable pentapeptide self-assembled β-sheet hydrogels. Angew Chem Int Ed 57:7709–7713

    Article  CAS  Google Scholar 

  27. Milner-White EJ, Poet R (1986) Four classes of beta-hairpins in proteins. Biochem J 240:289–292

    Article  CAS  Google Scholar 

  28. Larini L, Shea J-E (2012) Role of β-hairpin formation in aggregation: the self-assembly of the amyloid-β(25–35) peptide. Biophys J 103:576–586

    Article  CAS  Google Scholar 

  29. Rajagopal K, Lamm MS, Haines-Butterick LA, Pochan DJ, Schneider JP (2009) Tuning the pH responsiveness of β-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10:2619–2625

    Article  CAS  Google Scholar 

  30. Miller Y, Ma B, Nussinov R (2015) Polymorphism in self-assembly of peptide-based β-hairpin contributes to network morphology and hydrogel mechanical rigidity. J Phys Chem B 119:482–490

    Article  CAS  Google Scholar 

  31. Dong R, Pang Y, Su Y, Zhu X (2015) Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater Sci 3:937–954

    Article  CAS  Google Scholar 

  32. Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307

    Article  CAS  Google Scholar 

  33. Zhou Y, Fan X, Zhang W, Xue D, Kong J (2014) Stimuli-induced gel-sol transition of supramolecular hydrogels based on β-cyclodextrin polymer/ferrocene-containing triblock copolymer inclusion complexes. J Polym Res 21:359

    Article  CAS  Google Scholar 

  34. Hou S, Ma PX (2015) Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry. Chem Mater 27:7627–7635

    Article  CAS  Google Scholar 

  35. Kousar A, Feng C (2019) Controlled mechanical properties and supramolecular chirality of hydrogels via pH change. Methods X6:417–423

    Google Scholar 

  36. Li J (2010) Self-assembled supramolecular hydrogels based on polymer-cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater 2:112–118

    Article  Google Scholar 

  37. Eskandari S, Guerin T, Toth I, Stephenson RJ (2017) Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Delivery Rev 110–111:169–187

    Article  CAS  Google Scholar 

  38. Naota T, Koori H (2005) Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. https://doi.org/10.1021/JA050809H

  39. Isozaki K, Takaya H, Naota T (2007) Ultrasound-induced gelation of organic fluids with metalated peptides. Angew Chem Int Ed 46:2855–2857

    Article  CAS  Google Scholar 

  40. Grigoriou S et al (2012) Dipeptide hydrogel formation triggered by boronic acid–sugar recognition. Soft Matter 8:6788

    Article  CAS  Google Scholar 

  41. Marchesan S et al (2012) Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels. Nanoscale 4:6752

    Article  CAS  Google Scholar 

  42. Zhao F, Gao Y, Shi J, Browdy HM, Xu B (2011) Novel anisotropic supramolecular hydrogel with high stability over a wide pH range. Langmuir 27:1510–1512

    Article  CAS  Google Scholar 

  43. Suzuki M, Yumoto M, Shirai H, Hanabusa K (2005) l-Lysine-based supramolecular hydrogels containing various inorganic ions. Org Biomol Chem 3:3073

    Article  CAS  Google Scholar 

  44. Yang Z, Liang G, Xu B (2008) Enzymatic hydrogelation of small molecules. Acc Chem Res 41:315–326

    Article  CAS  Google Scholar 

  45. Yang ZM, Xu KM, Guo ZF, Guo ZH, Xu B (2007) Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death. Adv Mater 19:3152–3156

    Article  CAS  Google Scholar 

  46. Richardson PJ, Brown SJ, Bailyes EM, Luzio JP (1987) Ectoenzymes control adenosine modulation of immunoisolated cholinergic synapses. Nature 327:232–234

    Article  CAS  Google Scholar 

  47. Pospisil P, Iyer LK, Adelstein SJ, Kassis AI (2006) A combined approach to data mining of textual and structured data to identify cancer-related targets. BMC Bioinform 7:354

    Article  CAS  Google Scholar 

  48. Nakashima T, Kimizuka N (2002) Light-harvesting supramolecular hydrogels assembled from short-legged cationic L-glutamate derivatives and anionic fluorophores. Adv Mater 14:1113

    Article  CAS  Google Scholar 

  49. Wang H et al (2010) Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration. Nanotechnology 21:225606

    Article  CAS  Google Scholar 

  50. Milkovich R (1981) Synthesis of controlled polymer structures, pp 41–57. https://doi.org/10.1021/bk-1981-0166.ch003

  51. Gao GH, Li Y, Lee DS (2012) Block copolymer hydrogels. In: Encyclopedia of polymer science and technology. https://doi.org/10.1002/0471440264.pst577

  52. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    Article  CAS  Google Scholar 

  53. Fu H et al (2011) Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and poly(ethylene glycol). Soft Matter 7:3546

    Article  CAS  Google Scholar 

  54. Li X et al (2009) Self-assembled polymeric micellar nanoparticles as nanocarriers for poorly soluble anticancer drug ethaselen. Nanoscale Res Lett 4:1502–1511

    Article  CAS  Google Scholar 

  55. Hwang MJ et al (2010) Multiple sol-gel transitions of PEG-PCL-PEG triblock copolymer aqueous solution. Macromol Rapid Commun 31:2064–2069

    Article  CAS  Google Scholar 

  56. Brand HR, Martinoty P, Pleiner H (2011) Physical properties of magnetic gels

    Google Scholar 

  57. Popov N et al (2017) Thermotropic liquid crystal-assisted chemical and biological sensors. Materials. https://doi.org/10.3390/ma11010020

  58. Kaneko T, Yamaoka K, Gong JP, Osada Y (2000) Liquid-crystalline hydrogels. 1. Enhanced effects of incorporation of acrylic acid units on the liquid-crystalline ordering. https://doi.org/10.1021/MA991528V

  59. Yamaoka K, Kaneko T, Gong JP, Osada Y (2001) Liquid crystalline gels. 3. Role of hydrogen bonding in the formation and stabilization of mesophase structures. Macromolecules 34:1470–1476

    Article  CAS  Google Scholar 

  60. van der Asdonk P, Kouwer PHJ (2017) Liquid crystal templating as an approach to spatially and temporally organise soft matter. Chem Soc Rev 46:5935–5949

    Article  Google Scholar 

  61. Haque MA et al (2018) Tough and variable-band-gap photonic hydrogel displaying programmable angle-dependent colors. ACS Omega 3:55–62

    Article  CAS  Google Scholar 

  62. Wu ZL, Kurokawa T, Gong JP (2012) Hydrogels with a macroscopic-scale liquid crystal structure by self-assembly of a semi-rigid polyion complex. Polym J 44:503–511

    Article  CAS  Google Scholar 

  63. Wu ZL et al (2011) Anisotropic hydrogel from complexation-driven reorientation of semirigid polyanion at Ca2+ diffusion flux front. Macromolecules 44:3535–3541

    Article  CAS  Google Scholar 

  64. Sun T, Wu Z, Gong J (2012) Self-assembled structures of a semi-rigid polyanion in aqueous solutions and hydrogels. Sci China Chem 55:735–742

    Article  CAS  Google Scholar 

  65. Shigekura Y et al (2005) Anisotropic polyion-complex gels from template polymerization. Adv Mater 17:2695–2699

    Article  CAS  Google Scholar 

  66. Wu ZL, Kurokawa T, Liang S, Gong JP (2010) Dual network formation in polyelectrolyte hydrogel via viscoelastic phase separation: role of ionic strength and polymerization kinetics. Macromolecules 43:8202–8208

    Article  CAS  Google Scholar 

  67. Annabi N et al (2016) Highly elastic and conductive human-based protein hybrid hydrogels. Adv Mater 28:40–49

    Article  CAS  Google Scholar 

  68. Pechar M, Kopečková P, Joss L, Kopeček J (2002) Associative diblock copolymers of poly(ethylene glycol) and coiled-coil peptides. Macromol Biosci 2:199

    Article  CAS  Google Scholar 

  69. Hamley IW (2014) PEG–peptide conjugates. Biomacromolecules 15:1543–1559

    Article  CAS  Google Scholar 

  70. Yang J, Xu C, Kopečková P, Kopeček J (2006) Hybrid hydrogels self-assembled from HPMA copolymers containing peptide grafts. Macromol Biosci 6:201–209

    Article  CAS  Google Scholar 

  71. Wang C, Stewart RJ, KopeČek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420

    Article  CAS  Google Scholar 

  72. Xia Y et al (2017) Printable fluorescent hydrogels based on self-assembling peptides. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  73. Yuk H, Lu B, Zhao X (2019) Hydrogel bioelectronics. Chem Soc Rev 48:1642–1667

    Article  CAS  Google Scholar 

  74. Cai G et al (2017) Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv Sci 4:1600190

    Article  CAS  Google Scholar 

  75. Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002–8018

    Google Scholar 

  76. Ellis-Behnke RG et al (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci 103:5054–5059

    Article  CAS  Google Scholar 

  77. Kishimura A, Yamashita T, Aida T (2004) Phosphorescent organogels via “metallophilic” interactions for reversible RGB−color switching. https://doi.org/10.1021/JA0441007

  78. Kishimura A, Yamashita T, Yamaguchi K, Aida T (2005) Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events. Nat Mater 4:546–549

    Article  CAS  Google Scholar 

  79. Miravet JF, Escuder B (2005) Pyridine-functionalised ambidextrous gelators: towards catalytic gels. Chem Commun 5796. https://doi.org/10.1039/b510874h

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiya Jose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anil, A., Jose, J. (2021). Self-assembled Hydrogels: An Overview. In: Jose, J., Thomas, S., Thakur, V.K. (eds) Nano Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7138-1_14

Download citation

Publish with us

Policies and ethics