Skip to main content

Abiotic Stress: Its Outcome and Tolerance in Plants

  • Chapter
  • First Online:
Microbes and Signaling Biomolecules Against Plant Stress

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

The onset of nineteenth century along with anthropogenic pressure paved the way for global climatic variation which is a major factor for global undernourishment, malnutrition and endangered food security. The major upshot of climate change is abiotic stress like salinity, flood and drought that declines the agricultural productivity. Abiotic stress hampers the survival of the plants and restricts their growth and development. Each abiotic stress confers negative impact on plants by altering its physiology, morphology and metabolism. Production of reactive oxygen species during stress condition alters the structure and metabolic function in plants and restricts its growth. Drought is one of the serious threats to crop productivity among the abiotic stress that imposes multidimensional effects on plants. Drought alters physiology and anatomy of the plants and is the main reason for economic loss in terms of livestock and grain yield in both developed and developing countries. Plants adapt several resistance mechanisms to cope up with the drastic impact of stress. Main tolerance mechanisms are alteration in membrane structure, escaping the unfavourable conditions, activation of antioxidant defense system, production of compatible solutes for maintaining osmotic balance of the cell. Present manuscript focuses on the outcome of major abiotic stress in plants and their tolerance strategies against the variable environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Shahzad A, Iqbal M, Asif M, Hirani AH (2013) Morphological and molecular genetic variation in wheat for salinity tolerance at germination and early seedling stage. Aust J Crop Sci 7:66–74

    CAS  Google Scholar 

  • Alamri SA, Siddiqui MH, Al-Khaishany MY, Nasir Khan M, Ali HM, Alaraidh IA, Alsahli AA, Al-Rabiah H, Mateen M (2018) Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact 13:409–419

    Article  CAS  Google Scholar 

  • Alves LR, Monteiro CC, Carvalho RF, Ribeiro PC, Tezotto T, Azevedo RA, Gratão PL (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115

    Article  CAS  Google Scholar 

  • Amjad M, Ameen N, Murtaza B, Imran M, Shahid M, Abbas G, Naeem MA, Jacobsen SE (2019) Comparative physiological and biochemical evaluation of salt and nickel tolerance mechanisms in two contrasting tomato genotypes. Physiol Plant 168:27–37

    Article  CAS  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  Google Scholar 

  • Arefian M, Vessal S, Shafaroudi SM, Bagheri A (2018) Comparative analysis of the reaction to salinity of different chickpea (Cicer aretinum L.) genotypes: a biochemical, enzymatic and transcriptional study. J. Plant Growth Regul 37:391–402

    Article  CAS  Google Scholar 

  • Asch F, Dingkuhn M, Dörffling K, Miezan K (2000) Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113:109–118

    Article  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  Google Scholar 

  • Attina TM, Trasande L (2013) Economic costs of childhood lead exposure in low-and middle-income countries. Environ Health Perspect 121:1097–1102

    Article  Google Scholar 

  • Augustsson AL, Uddh-Söderberg TE, Hogmalm KJ, Filipsson ME (2015) Metal uptake by homegrown vegetables–the relative importance in human health risk assessments at contaminated sites. Environ Res 138:181–190

    Article  CAS  Google Scholar 

  • Badigannavar A, Teme N, de Oliveira AC, Li G, Vaksmann M, Viana VE, Ganapathi TR, Sarsu F (2018) Physiological, genetic and molecular basis of drought resilience in sorghum [Sorghum bicolor (L.) Moench]. Indian J Plant Physiol 23(4):670–688

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing crops: effective flooding survival strategies. Plant Physiol 160:1698–1709

    Article  CAS  Google Scholar 

  • Bajpai S, Chandra R (2015) Effect of waterlogging stress on growth characteristics and sod gene expression in sugarcane. Int J Sci Res Publ 5:1–8

    Google Scholar 

  • Bakhshandeh S, Corneo PE, Yin L, Dijkstra FA (2019) Drought and heat stress reduce yield and alter carbon rhizodeposition of different wheat genotypes. J Agron Crop Sci 205:157–167

    Article  CAS  Google Scholar 

  • Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, Akila CS, Podha S, Puli CO (2018) Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Front Chem 6:1–24

    Article  CAS  Google Scholar 

  • Bar Y, Apelbaum A, Kafkafi U, Goren R (1997) Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. J Plant Nutr 20:715–731

    Article  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. New York, Wiley

    Google Scholar 

  • Batra NG, Kumari N, Sharma V (2018) Chlorophyll fluorescence based assessment of low temperature stress in different varieties of Vigna radiata (L.). Int J Plant Res 31:146–155

    Google Scholar 

  • Bhatla SC (2018) Abiotic stress. In: Plant physiology, development and metabolism. Springer, Singapore, pp 969–1028

    Chapter  Google Scholar 

  • Bhavyasree RK, Joel AJ, Jeyaprakash P, Raveendran M (2019) The effect of induced drought stress on seedling vigour and antioxidant enzymes in wild and cultivated Oryza species. Int J Chem Stud 7:1078–1081

    CAS  Google Scholar 

  • Bilska-Kos A, Solecka D, Dziewulska A, Ochodzki P, Jończyk M, Bilski H, Sowiński P (2017) Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.). Protoplasma 254:713–724

    Article  CAS  Google Scholar 

  • Borges KLR, Salvato F, Alcântara BK, Nalin RS, Piotto FA, Azevedo RA (2018) Temporal dynamic responses of roots in contrasting tomato genotypes to cadmium tolerance. Ecotoxicology 27:245–258

    Article  CAS  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867

    Article  CAS  Google Scholar 

  • Camejo D, Jiménez A, Alarcón JJ, Torres W, Gómez JM, Sevilla F (2006) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol 33:177–187

    Article  CAS  Google Scholar 

  • Carrao H, Naumann G, Barbosa P (2016) Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Glob Environ Chang 39:108–124

    Article  Google Scholar 

  • Carter AY, Ottman MJ, Curlango-Rivera G, Huskey DA, D’Agostini BA, Hawes MC (2019) Drought-tolerant barley: II. Root tip characteristics in emerging roots. Agronomy 9:1–10

    Article  Google Scholar 

  • Carvalho MEA, Piotto FA, Franco MR, Borges KLR, Gaziola SA, Castro PRC, Azevedo RA (2018) Cadmium toxicity degree on tomato development is associated with disbalances in B and Mn status at early stages of plant exposure. Ecotoxicology 27:1293–1302

    Article  CAS  Google Scholar 

  • Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265

    Article  CAS  Google Scholar 

  • Chen H, Zhang Q, Lu Z, Xu F (2018) Accumulation of ammonium and reactive oxygen mediated drought-induced rice growth inhibition by disturbed nitrogen metabolism and photosynthesis. Plant Soil 431:107–117

    Article  CAS  Google Scholar 

  • Chiang PN, Chiu CY, Wang MK, Chen BT (2011) Low-molecular-weight organic acids exuded by Millet (Setaria italica (L.) Beauv.) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176:33–38

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L (2013) Effect of combined pollution of chromium and benzo (a) pyrene on seed growth of Lolium perenne. Chemosphere 90:164–169

    Article  CAS  Google Scholar 

  • CIA (2017) The world factbook. https://www.cia.gov/library/publications/the-world-factbook/. Accessed 23 Sept 2019

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11:1–15

    Article  CAS  Google Scholar 

  • Dawood T, Rieu I, Wolters-Arts M, Derksen EB, Mariani C, Visser EJ (2014) Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AoB Plants 6:1–13

    Article  CAS  Google Scholar 

  • Deepak SB, Thakur A, Singh S, Bakshi M, Bansal S (2019) Changes in crop physiology under drought stress: a review. J Pharmacogn Phytochem 8:1251–1253

    Google Scholar 

  • de Souza TC, dos Santos SE, Dousseau S, de Castro EM, Magalhães PC (2013) Seedlings of Garcinia brasiliensis (Clusiaceae) subjected to root flooding: physiological, morphoanatomical, and antioxidant responses to the stress. Aquat Bot 111:43–49

    Article  CAS  Google Scholar 

  • Devi SR, Prasad MNV (1999) Membrane lipid alterations in heavy metal exposed plants. In: Prasad MNV (ed) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 99–116

    Chapter  Google Scholar 

  • Dhawan SS, Mishra A, Gupta P, Bahl JR, Bansal RP (2018) Phylogentic relationship of cold tolerant Mentha arvensis variety ‘CIM Kranti’ with some released varieties as assessed through physiological and molecular analysis. J Appl Res Med Aromat Plants 10:67–74

    Google Scholar 

  • Din J, Khan SU, Ali I, Gurmani AR (2011) Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci 21:78–82

    Google Scholar 

  • Dolatabadi N, Toorchi M, Valizadeh M, Bandehagh A (2019) The proteome response of salt-sensitive rapeseed (Brassica napus L.) genotype to salt stress. Not Bot Horti Agrobot Cluj Napoca 47:17–23

    Article  CAS  Google Scholar 

  • Dwivedi SK, Kumar S, Bhakta N, Srivastava AK, Mishra JS, Kumar V, Kumara BH, Bhatt BP, Singh S (2018) Physiological mechanism and nutrient management strategies for flood tolerance in rice grown in lowland flood prone ecosystem. J Crop Sci Biotechnol 21:321–331

    Article  Google Scholar 

  • Dziubanek G, Piekut A, Rusin M, Baranowska R, Hajok I (2015) Contamination of food crops grown on soils with elevated heavy metals content. Ecotoxicol Environ Saf 118:183–189

    Article  CAS  Google Scholar 

  • Ezaki B, Nagao E, Yamamoto Y, Nakashima S, Enomoto T (2008) Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses. Plant Cell Rep 27:951–961

    Article  CAS  Google Scholar 

  • Ezin V, Pena RDL, Ahanchede A (2010) Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Braz J Plant Physiol 22:131–142

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1–16

    Article  Google Scholar 

  • FAO (2015) Food and Agriculture Organization of the United Nations. http://www.fao.org/3/a-bc600e.pdf. Accessed 1 Oct 2016

  • FAO (2016) Food and Agriculture Organization of the United Nations. http://www.fao.org/3/a-i6471e.pdf. Accessed 1 Oct 2017

  • FAO (2017) How close we are to zero Hunger. http://www.fao.org/state-of-food-securitynutrition/en/geos/kz.html. Accessed 1 Mar 2019

  • FAO (2018) The state of food security and nutrition in the world. http://www.fao.org/state-of-food-security-nutrition/en/. Accessed 15 Sept 2019

  • Farahbakhsh H, Pasandi Pour A, Reiahi N (2017) Physiological response of henna (Lawsonia inermise L.) to salicylic acid and salinity. Plant Prod Sci 20:237–247

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJ, Fischhoff DA, Hodges CN, Knauf VC, Lobell D, Mazur BJ, Molden D, Reynolds MP (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834

    Article  CAS  Google Scholar 

  • Flagella Z, Trono D, Pompa M, Di Fonzo N, Pastore D (2006) Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. Funct Plant Biol 33:357–366

    Article  CAS  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Gomes-Filho E, Lima CRFM, Costa JH, da Silva ACM, Lima MDGS, de Lacerda CF, Prisco JT (2008) Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27:147–157

    Article  CAS  Google Scholar 

  • Gonzalez JA, Gallardo M, Hilal M, Rosa M, Prado FE (2009) Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning. Bot Stud 50:35–42

    CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Grzesiak S, Hura T, Grzesiak MT, Pieńkowski S (1999) The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiol Plant 21:305–315

    Article  Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2010) The dynamics of heavy metals in plant–soil interactions. Ecol Model 221:1148–1152

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:1–18

    Article  CAS  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  Google Scholar 

  • Guru A, Dwivedi P (2018) Physiological, biochemical and molecular mechanism of submergence tolerance in rice (Oryza sativa L.). J Pharmacogn Phytochem 7:1116–1121

    CAS  Google Scholar 

  • Han Y, Yin S, Huang L, Wu X, Zeng J, Liu X, Qiu L, Munns R, Chen ZH, Zhang G (2018) A sodium transporter HvHKT1; 1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant Cell Physiol 59:1976–1989

    Article  CAS  Google Scholar 

  • Han Y, Yang H, Wu M, Yi H (2019) Enhanced drought tolerance of foxtail millet seedlings by sulfur dioxide fumigation. Ecotoxicol Environ Saf 178:9–16

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Tuteja N, Gill SS (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hossain MA, Uddin SN (2011) Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Aust J Crop Sci 5:1094–1101

    CAS  Google Scholar 

  • Hu Y, Schmidhalter U (1997) Interactive effects of salinity and macronutrient level on wheat. II. Composition. J Plant Nutr 20:1169–1182

    Article  CAS  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • Jackson MB (2006) Plant survival in wet environments: resilience and escape mediated by shoot systems. In: Bobbink R, Beltman B, Verhoeven JTA, Whigham DE (eds) Wetlands: functioning, biodiversity conservation, and restoration. Springer, Berlin, Heidelberg, pp 15–36

    Chapter  Google Scholar 

  • Jackson MB (2008) Ethylene-promoted elongation: an adaptation to submergence stress. Ann Bot 101:229–248

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  CAS  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Jeschke WD (1984) K+-Na+ exchange at cellular membranes, intracellular compartmentation of cations, and salt tolerance. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants strategies for crop improvement. Wiley, Toronto, pp 37–66

    Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40–48

    Article  CAS  Google Scholar 

  • Kalai T, Khamassi K, Teixeira da Silva JA, Gouia H, Bettaieb Ben-Kaab L (2014) Cadmium and copper stress affect seedling growth and enzymatic activities in germinating barley seeds. Arch Agron Soil Sci 60:765–783

    Article  CAS  Google Scholar 

  • Kalaji HM, Loboda T (2007) Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil Environ 53:511–516

    Article  CAS  Google Scholar 

  • Kaloki P, Devasirvatham V, Tan DK (2019) Chickpea abiotic stresses: combating drought, heat and cold. In: Alexandre DO (ed) Abiotic and biotic stress in plants. IntechOpen, London, pp 725–729

    Google Scholar 

  • Kaundal A, Sandhu D, Duenas M, Ferreira JF (2019) Expression of the high-affinity K+ transporter 1 (PpHKT1) gene from almond rootstock ‘Nemaguard’ improved salt tolerance of transgenic Arabidopsis. PLoS One 14:e0214473

    Article  CAS  Google Scholar 

  • Khan MA, Gul B (2006) Halophyte seed germination. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Dordrecht, pp 11–30

    Chapter  Google Scholar 

  • Khan MN, Zhan J, Luo T, Liu J, Ni F, Rizwan M, Fahad S, Hu L (2019) Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. Acta Physiol Plant 41:1–13

    Article  CAS  Google Scholar 

  • Khatun S, Rizzo CA, Flowers TJ (1995) Genotypic variation in the effect of salinity on fertility in rice. Plant Soil 173:239–250

    Article  CAS  Google Scholar 

  • Kim JY, Mahé A, Brangeon J, Prioul JL (2000) A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol 124:71–84

    Article  CAS  Google Scholar 

  • Kirk GJD, Greenway H, Atwell BJ, Ismail AM, Colmer TD (2014) Adaptation of rice in flooded soil. In: Lüttge U, Beyschlag W, Cushman J (eds) Progress in botany. Springer, Berlin, pp 215–253

    Chapter  Google Scholar 

  • Klein M, Burla B, Martinoia E (2006) The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 580:1112–1122

    Article  CAS  Google Scholar 

  • Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  Google Scholar 

  • Krishnan HB, Oehrle NW, Alaswad AA, Stevens WG, Maria John KM, Luthria DL, Natarajan SS (2019) Biochemical and anatomical investigation of Sesbania herbacea (Mill.) McVaugh nodules grown under flooded and non-flooded conditions. Int J Mol Sci 20:1–20

    Article  Google Scholar 

  • Kulichikhin K, Yamauchi T, Watanabe K, Nakazono M (2014) Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss. Plant Cell Environ 37:2406–2420

    CAS  Google Scholar 

  • Kumar P, Pal M, Joshi R, Sairam RK (2013) Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiol Mol Biol Plants 19:209–220

    Article  CAS  Google Scholar 

  • Kuzminov FI, Brown CM, Fadeev VV, Gorbunov MY (2013) Effects of metal toxicity on photosynthetic processes in coral symbionts, Symbiodinium spp. J Exp Mar Biol Ecol 446:216–227

    Article  CAS  Google Scholar 

  • Ladrera R, Marino D, Larrainzar E, González EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    Article  CAS  Google Scholar 

  • Lahaye PA, Epstein E (1971) Calcium and salt toleration by bean plants. Physiol Plant 25:213–218

    Article  CAS  Google Scholar 

  • Lai JL, Luo XG (2019) High-efficiency antioxidant system, chelating system and stress-responsive genes enhance tolerance to cesium ionotoxicity in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 181:491–498

    Article  CAS  Google Scholar 

  • Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN, Chiles T (2018) The lancet commission on pollution and health. Lancet 391:462–512

    Article  Google Scholar 

  • Lawas LMF, Shi W, Yoshimoto M, Hasegawa T, Hincha DK, Zuther E, Jagadish SK (2018) Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions. Field Crops Res. 229:66–77

    Article  Google Scholar 

  • Lea-Cox JD, Syvertsen JP (1993) Salinity reduces water use and nitrate-N-use efficiency of citrus. Ann Bot 72:47–54

    Article  CAS  Google Scholar 

  • Lisar SY, Motafakkerazad R, Hossain MM, Rahman IM (2012) Water stress in plants: causes, effects and responses. In: Ismail MD, Mofizur R, Hiroshi H (eds) Water stress. IntechOpen, London, pp 1–15

    Google Scholar 

  • Ma L, Coulter JA, Liu L, Zhao Y, Chang Y, Pu Y, Zeng X, Xu Y, Wu J, Fang Y, Bai J (2019) Transcriptome analysis reveals key cold-stress-responsive genes in winter rapeseed (Brassica rapa L.). Int J Mol Sci 20:1–19

    Article  Google Scholar 

  • Mahmood T, Mustafa HSB, Aftab M, Ali Q, Malik A (2019) Super canola: newly developed high yielding, lodging and drought tolerant double zero cultivar of rapeseed (Brassica napus L.). Genet Mol Res 18:gmr16039951

    Google Scholar 

  • Makino T, Murakami M, Ishikawa S, Abe T (2019) Regulations for cadmium in Rice and soil in Japan and countermeasures to reduce the concentrations. In: Himeno S, Aoshima K (eds) Cadmium toxicity. Springer, Singapore, pp 103–114

    Chapter  Google Scholar 

  • Manickavelu A, Nadarajan N, Ganesh SK, Gnanamalar RP, Babu RC (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50:121–138

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    Article  CAS  Google Scholar 

  • Maryan KE, Lahiji HS, Farrokhi N, Komeleh HH (2019) Analysis of Brassica napus dehydrins and their co-expression regulatory networks in relation to cold stress. Gene Expr Patterns 31:7–17

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • Mensah JK, Obadoni BO, Eruotor PG, Onome-Irieguna F (2006) Simulated flooding and drought effects on germination, growth, and yield parameters of sesame (Sesamum indicum L.). Afr J Biotechnol 5:1249–1253

    CAS  Google Scholar 

  • Mierek-Adamska A, Dąbrowska GB, Blindauer CA (2018) The type 4 metallothionein from Brassica napus seeds folds in a metal-dependent fashion and favours zinc over other metals. Metallomics 10:1430–1443

    Article  CAS  Google Scholar 

  • Munns R (2002a) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R (2002b) Salinity, growth and phytohormones. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Springer, Dordrecht, pp 271–290

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Ohnishi N, Wacera F, Sakamoto W (2019) Photosynthetic responses to high temperature and strong light suggest potential post-flowering drought tolerance of Sorghum Japanese landrace Takakibi. Plant Cell Physiol 60:2086–2099

    Article  CAS  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK (2014) Climate change 2014: synthesis report. In: Pachauri R, Meyer L (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Ipcc, Geneva, p 151

    Google Scholar 

  • Pan L, Yu X, Shao J, Liu Z, Gao T, Zheng Y, Chen C (2019) Transcriptomic profiling and analysis of differentially expressed genes in asparagus bean (Vigna unguiculata ssp. sesquipedalis) under salt stress. PLoS One 14:e0219799

    Article  CAS  Google Scholar 

  • Panozzo A, Dal Cortivo C, Ferrari M, Vicelli B, Varotto S, Vamerali T (2019) Morphological changes and expressions of AOX1A, CYP81D8 and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Front Plant Sci 10:1–14

    Article  Google Scholar 

  • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6:plu047

    Article  CAS  Google Scholar 

  • Parelle J, Roudaut JP, Ducrey M (2006) Light acclimation and photosynthetic response of beech (Fagus sylvatica L.) saplings under artificial shading or natural Mediterranean conditions. Ann For Sci 63:257–266

    Article  Google Scholar 

  • Parent C, Capelli N, Berger A, Crèvecoeur M, Dat JF (2008) An overview of plant responses to soil waterlogging. Plant Stress 2:20–27

    Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J Hazard Mater 185:549–574

    Article  CAS  Google Scholar 

  • Park HC, Hwang JE, Jiang Y, Kim YJ, Kim SH, Nguyen XC, Kim CY, Chung WS (2019) Functional characterisation of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress. Plant Biol 21:854–861

    Article  CAS  Google Scholar 

  • Parra-Almuna L, Diaz-Cortez A, Ferrol N, de la Luz Mora M (2018) Aluminium toxicity and phosphate deficiency activates antioxidant systems and up-regulates expression of phosphate transporters gene in ryegrass (Lolium perenne L.) plants. Plant Physiol Biochem 130:445–454

    Article  CAS  Google Scholar 

  • Patel BB, Dave RS (2011) Studies on infiltration of saline-alkali soils of several parts of Mehsana and Patan districts of North Gujarat. J Appl Technol Environ Sanit 1:87–92

    Google Scholar 

  • Paul K, Pauk J, Kondic-Spika A, Grausgruber H, Allahverdiyev T, Sass L, Vass I (2019) Co-occurrence of mild salinity and drought synergistically enhances biomass and grain retardation in wheat. Front Plant Sci 10:1–15

    Article  Google Scholar 

  • Pekcan V, Evci G, Yilmaz MI, Nalcaiyi ASB, Erdal SÇ, Cicek N, Ekmekci Y, Kaya Y (2015) Drought effects on yield traits of some sunflower inbred lines. Poljopr Sumar 61:101–107

    Google Scholar 

  • Pierart A, Shahid M, Sejalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234

    Article  CAS  Google Scholar 

  • Popović V, Miladinović J, Vidić M, Vučković S, Dolijanović Ž, Ikanović J, Zivanović LJ, Kolarić L (2015) Drought–limiting factors in soybean production. The effect of irrigation on yield of soybean [Glycine max (L.) Merr.]. Proceedings. Institute of PKB Agroekonomik, Belgrade, pp 11–21

    Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta DK (ed) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 121–147

    Chapter  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294

    Article  Google Scholar 

  • Queiroz MS, Oliveira CE, Steiner F, Zuffo AM, Zoz T, Vendruscolo EP, Silva MV, Mello BFFR, Cabra RC, Menis FT (2019) Drought stresses on seed germination and early growth of maize and sorghum. J Agric Sci 11:310–318

    Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Article  CAS  Google Scholar 

  • Rathaur P, Ramteke PW, Raja W, John SA (2012) Isolation and characterization of nickel and cadmium tolerant plant growth promoting rhizobacteria from rhizosphere of Withania somnifera. J Environ Sci 6:253–261

    Google Scholar 

  • Reddy MD, Mittra BN (1985) Effect of complete plant submergence at different growth stages on grain yield, yield components and nutrient content of rice. Plant Soil 86:379–386

    Article  Google Scholar 

  • Reddy KR, Krutz L, Gao W, Bellaloui N (2019) Poor seed quality, reduced germination, and decreased seedling vigor in soybean is linked to exposure of the maternal lines to drought stress. BioRxiv:590059 (in press)

    Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gomez MD, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Ronga D, Rizza F, Badeck FW, Milc J, Laviano L, Montevecchi G, Pecchioni N, Francia E (2018) Physiological responses to chilling in cultivars of processing tomato released and cultivated over the past decades in Southern Europe. Sci Hortic 231:118–125

    Article  Google Scholar 

  • Rozeff N (1995) Sugarcane and salinity—a review paper. Sugarcane 5:8–19

    Google Scholar 

  • Sadak MS (2019) Physiological role of trehalose on enhancing salinity tolerance of wheat plant. Bull Natl Res Cent 43:1–10

    Article  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J. Exp Biol 48:593–600

    CAS  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant 52:401

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  Google Scholar 

  • Sánchez-Gómez D, Cervera MT, Escolano-Tercero MA, Vélez MD, de María N, Diaz L, Sánchez-Vioque R, Aranda I, Guevara MA (2019) Drought escape can provide high grain yields under early drought in lentils. Theor Exp Plant Physiol 31(2):273–286

    Article  Google Scholar 

  • Sapeta H, Costa JM, Lourenco T, Maroco J, Van der Linde P, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84

    Article  CAS  Google Scholar 

  • Satir O, Berberoglu S (2016) Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Res 192:134–143

    Article  Google Scholar 

  • Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16:282–286

    Article  Google Scholar 

  • Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK (2016) Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  • Schulze ED, Beck E, Buchmann N, Clemens S, Müller-Hohenstein K, Scherer-Lorenzen M (2019) Water deficiency (Drought). In: Schulze ED, Beck E, Buchmann N (eds) Plant Ecology. Springer, Heidelberg, pp 162–202

    Chapter  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold Press, London, p 610

    Google Scholar 

  • SEDAC (n.d.) Global flood hazard frequency and distribution, v1 (1985  –  2003). http://sedac.ciesin.columbia.edu/data/set/ndh-flood-hazard-frequency-distribution. Accessed 15 Oct 2019

  • Selpair S (2018) Analyzing reproductive capabilities of chickpea in cold environment. http://210.212.34.21/handle/32116/1952. Accessed 2 Mar 2018

  • Shahid M, Arshad M, Kaemmerer M, Pinelli E, Probst A, Baque D, Pradere P, Dumat C (2012) Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytoremediation 14:493–505

    Article  CAS  Google Scholar 

  • Sharma N, Bisht SS, Gupta S, Panda AK, Rana M (2018) Analysis of proteomic diversity and calcium binding protein(s) in seeds of horse gram (Macrotyloma uniflorum) cultivars from Uttarakhand. Int J Pharm Sci Res 9:3274–3280

    CAS  Google Scholar 

  • Shawon RA, Kang DH, Ryu CS, Kim DE, Lee SY, Bae JH, Kim YO, Ku YG (2017) Physiological responses and antioxidative enzyme activities in pepper (Capsicum annuum) seedlings under low temperature stress. J Agric Life Sci 51:67–77

    Article  Google Scholar 

  • Shiono K, Takahashi H, Colmer TD, Nakazono M (2008) Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci 175:52–58

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  Google Scholar 

  • Silva EN, Silveira JA, Aragão RM, Vieira CF, Carvalho FE (2019) Photosynthesis impairment and oxidative stress in Jatropha curcas exposed to drought are partially dependent on decreased catalase activity. Acta Physiol Plant 41:1–12

    Article  CAS  Google Scholar 

  • Singh S, Singh SP, Pathak AD, Pandey N (2019) Assessment of waterlogging induced physiobiochemical changes in sugarcane varieties and its association with waterlogging tolerance. J Environ Biol 40:384–392

    Article  CAS  Google Scholar 

  • Sinha S, Raxwal VK, Joshi B, Jagannath A, Katiyar-Agarwal S, Goel S, Kumar A, Agarwal M (2015) De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.). Front Plant Sci 6:1–17

    Article  Google Scholar 

  • Solaiman Z, Colmer TD, Loss SP, Thomson BD, Siddique KHM (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agric Res 58:406–412

    Article  Google Scholar 

  • Souza SC, Mazzafera P, Sodek L (2016) Flooding of the root system in soybean: biochemical and molecular aspects of N metabolism in the nodule during stress and recovery. Amino Acids 48:1285–1295

    Article  CAS  Google Scholar 

  • Stvolinskaya NS (2000) Viability of Taraxacum officinale Wigg. in populations of the city of Moscow in relation to motor transport pollution. Russ J Ecol 31:129–131

    Article  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Suhayda CG, Giannini JL, Briskin DP, Shannon MC (1990) Electrostatic changes in Lycopersicon esculentum root plasma membrane resulting from salt stress. Plant Physiol 93:471–478

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Sunderland, MA, pp 345–376

    Google Scholar 

  • Tang H, Niu L, Wei J, Chen X, Chen Y (2019) Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition. Front Plant Sci 10:1–10

    Article  Google Scholar 

  • Tarekegne A, Bennie ATP, Labuschagne MT (2000) Effects of soil waterlogging on the concentration and uptake of selected nutrients in wheat genotypes differing in tolerance. In: The eleventh regional wheat workshop for eastern, central and southern Africa, Addis Abeba, Ethiopia. CIMMYT, Addis Ababa, pp 253–263

    Google Scholar 

  • Tewari S, Arora NK (2016) Soybean production under flooding stress and its mitigation using plant growth-promoting microbes. In: Mohammad M (ed) Environmental stresses in soybean production: soybean production, vol 2. Academic press, San Diego, pp 23–40

    Chapter  Google Scholar 

  • Turhan E, Ergin S (2012) Soluble sugars and sucrose-metabolizing enzymes related to cold acclimation of sweet cherry cultivars grafted on different rootstocks. Sci World J 2012:1–7

    Article  CAS  Google Scholar 

  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71:194–233

    Google Scholar 

  • UNESCO (2018) Climate change and water security. https://en.unesco.org/themes/addressing-climate-change/climate-change-and-water-security. Accessed 12 Mar 2018

  • Vandoorne B, Descamps C, Mathieu AS, Van den Ende W, Vergauwen R, Javaux M, Lutts S (2014) Long term intermittent flooding stress affects plant growth and inulin synthesis of Cichorium intybus (var. sativum). Plant Soil 376:291–305

    Article  CAS  Google Scholar 

  • Wang Y, Zhang B, Jiang D, Chen G (2019) Silicon improves photosynthetic performance by optimizing thylakoid membrane protein components in rice under drought stress. Environ Exp Bot 158:117–124

    Article  CAS  Google Scholar 

  • Watts J (19 March 2018) Water shortages could affect 5bn people by 2050, UN report warns. The Guardian. https://www.theguardian.com/environment/2018/mar/19/water-shortages-could-affect-5bn-people-by-2050-un-report-warns. Accessed 31 Oct 2019

  • Wei H, Chen C, Ma X, Zhang Y, Han J, Mei H, Yu S (2017) Comparative analysis of expression profiles of panicle development among tolerant and sensitive rice in response to drought stress. Front Plant Sci 8:1–10

    Article  Google Scholar 

  • Williams G, Vanniarajan C, Vetriventhan M, Thiageshwari S, Anandhi K, Rajagopal B (2019) Genetic variability for seedling stage salinity tolerance in barnyard millet [Echinochloa frumentacea (Roxb.) Link]. Electron J Plant Breed 10:552–558

    Article  Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation: the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol 83(2):272–277

    Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    Article  CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  Google Scholar 

  • Wu GQ, Wang JL, Feng RJ, Li SJ, Wang CM (2018) iTRAQ-based comparative proteomic analysis provides insights into molecular mechanisms of salt tolerance in sugar beet (Beta vulgaris L.). Int J Mol Sci 19:1–20

    Article  Google Scholar 

  • Xiong ZT, Zhao F, Li MJ (2006) Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environ Toxicol 21:147–153

    Article  CAS  Google Scholar 

  • Yadav P, Kaur R, Kanwar MK, Bhardwaj R, Sirhindi G, Wijaya L, Alyemeni MN, Ahmad P (2018) Ameliorative role of castasterone on copper metal toxicity by improving redox homeostasis in Brassica juncea L. J Plant Growth Regul 37:575–590

    Article  CAS  Google Scholar 

  • Yamauchi T, Colmer TD, Pedersen O, Nakazono M (2018) Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol 176:1118–1130

    Article  CAS  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    Article  CAS  Google Scholar 

  • Yin D, Chen S, Chen F, Guan Z, Fang W (2009) Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot 67:87–93

    Article  CAS  Google Scholar 

  • Yu B, Zhao CY, Li J, Li JY, Peng G (2015) Morphological, physiological, and biochemical responses of Populus euphratica to soil flooding. Photosynthetica 53:110–117

    Article  CAS  Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    Article  CAS  Google Scholar 

  • Zhang X, Wan S, Hao J, Hu J, Yang T, Zong X (2016) Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the field during winter in Qingdao. Crop J 4:377–383

    Article  Google Scholar 

  • Zhang C, Bai T, Xie D, Wang Y, Zhang H, Chen Y, Ni Z (2019a) Effects of PEG-6000 simulation drought stress on seed germination of mango (Mangiferca indica L.). Nanfang Nongye Xuebao 50:600–606 (in Chinese)

    Google Scholar 

  • Zhang W, Wang S, Yu F, Tang J, Shan X, Bao K, Yu L, Wang H, Fei Z, Li J (2019b) Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses. BMC Genomics 20:1–16

    Google Scholar 

  • Zhao C, Yang R, Hong Y, Ren Z, Tang K, Zhang H, Zhu JK (2019) A role for PICKLE in the regulation of cold and salt stress tolerance in Arabidopsis. Front Plant Sci 10:1–11

    Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Jing Q, Cao W (2009) Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582

    Article  CAS  Google Scholar 

  • Zhou M (2010) Improvement of plant waterlogging tolerance. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer, Heidelberg, pp 267–285

    Chapter  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  Google Scholar 

  • Zinselmeier C, Jeong BR, Boyer JS (1999) Starch and the control of kernel number in maize at low water potentials. Plant Physiol 121:25–36

    Article  CAS  Google Scholar 

  • Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol 21:31–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, P., Shankhdhar, D., Shankhdhar, S.C. (2021). Abiotic Stress: Its Outcome and Tolerance in Plants. In: Sharma, A. (eds) Microbes and Signaling Biomolecules Against Plant Stress. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7094-0_5

Download citation

Publish with us

Policies and ethics