Skip to main content

Sugar Industry: A Hub of Useful Bio-Based Chemicals

  • Chapter
  • First Online:
Sugar and Sugar Derivatives: Changing Consumer Preferences

Abstract

Sugarcane, a C4 crop, is an excellent source of biomass conversion of solar energy. In addition to sugar, sugarcane is a great source of fibre, fodder, fuel and many chemicals. Sugarcane could synthesize and store a vast number of useful compounds. The chemicals are sucrose, glucose, fructose, polysaccharides, acids, alcohols, wax, etc., which could be commercially obtained from this crop. In addition to the extraction of sucrose, the by-products, such as bagasse, molasses, press mud or filter cake, provide sufficient opportunities for value-added products such as bioenergy, chemicals, medicines, pesticides, etc., through microbial fermentation, extraction and physico-chemical transformation. The by-products (bagasse, molasses, press mud) obtained from sugarcane processing are rich source of several chemicals. Exploring these bio-based chemicals out of sugarcane by-products may not only convert the waste material into useful products but also generate employment opportunity, especially in rural areas, making sugarcane cultivation more profitable and sustainable. Sugarcane-derived bio-based chemicals have a huge potential and much needed by the society in the coming years. As a result, sugar mills are required to be converted into sustainable biorefineries that may fully exploit the potential of sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EFSA:

European Food Safety Authority

MSG:

Monosodium glutamate

PHA:

Polyhydroxyalkanoates

References

  • Almazan O, Gonzalez L, Galvez L (2001) The sugarcane, its by-products and co-products. Sugar Cane International No. (July), pp 3–8

    Google Scholar 

  • Anonymous (1988) Handbook of sugarcane derivatives. Publication of the Group of Latin American and Caribbean Sugar Exporting Countries (GEPLACEA). Mexico

    Google Scholar 

  • Anonymous (2007) Ethanol from sugar bagasse within 10 years. Sugar J, p 5

    Google Scholar 

  • Anthonia EE, Philip HS (2015) An overview of the applications of furfural and its derivatives. Int J Adv Chem 3(2):42–47

    Article  Google Scholar 

  • Arevalo-Villena M, Briones-Perez A, Corbo MR, Sinigaglia M, Bevilacqua A (2017) Biotechnological application of yeasts in food science: starter cultures, probiotics and enzyme production. J Appl Microbiol 123(6):1360–1372. https://doi.org/10.1111/jam.13548

    Article  CAS  PubMed  Google Scholar 

  • Baêta BEL, Lima DRS, Filho JGB, Adarme OFH, Gurgel LVA, de Aquino SF (2016) Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process. Bioresour Technology 218:436–446

    Article  Google Scholar 

  • Balch RT (1953) The lipids of sugarcane. In: Honig P (ed) Principles of sugar technology, vol 1. Elsevier, Amsterdam, pp 196–213

    Google Scholar 

  • Bawasakar VS, Patil SP, Ranadive SJ, Zende GK (1978). Indian Sugar 27:807

    Google Scholar 

  • Betancur GJV, Pereira N Jr (2010) Sugar cane bagasse as feedstock for second generation ethanol production. Part I: diluted acid pretreatment optimization. Electron J Biotechnol 13:1–9

    Google Scholar 

  • Bhopal P, Gudre RH (2001) β-carotene production in sugarcane molasses by Rhodotorula glutinis mutant. J Ind Microbiol Biotechnol 26(6):327–332

    Article  Google Scholar 

  • Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147(1):13–21

    Article  CAS  Google Scholar 

  • Chandrasekaran M. (Ed.) (2012) Valorization of food processing by-products: fermented foods and beverages series. CRC Press, Taylor & Francis Group, p 836. isbn:1439848858, 9781439848852

    Google Scholar 

  • Chenu P (1977) Alcohol manufacture in a sugar factory. In: Proceedings 16th congress ISSCT (Brazil). Impres, Sao Paulo, pp 3241–3251

    Google Scholar 

  • Chretien R (1957) Fabrication du furfural a partir des dechets vegetaux. Ind Alim Agr 74:173–181

    CAS  Google Scholar 

  • Cséfalvay E, Akien GR, Qi L, Horváth IT (2015) Definition and application of ethanol equivalent: sustainability performance metrics for biomass conversion to carbon-based fuels and chemicals. Catal Today 239:50–55

    Article  Google Scholar 

  • Delavier HJ (1967) Sugar for feeding purposes, F.O. Licht’s Yearbook and Directory, Ratzeburg, pp 242–245

    Google Scholar 

  • Dong W, Zheng S, Peng B, Minyan G, Zhou X, Xiang B, Zhang Y (2016) Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-beta Lewis acid-base catalyst. Sci Rep 6:26713. https://doi.org/10.1038/srep26713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK, Meena BL, Rajendiran S, Regar KL, Lata M (2016) Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int J Recycl Organ Waste Agric 5:185–194

    Article  Google Scholar 

  • Dubourg J (1956) Apercu de sucrochimie. Ind Alim Agr 73(10):625–630

    CAS  Google Scholar 

  • Duffey HR (1968).Bagasse as a raw material for furfural. In: 13th ISSCT Congress (Taiwan)

    Google Scholar 

  • Dunlop AP (1956) Furfural from agricultural sources, Royal Institute of Chemistry (London). Lectures, Monographs, Reports, No.4

    Google Scholar 

  • Dutoit JL (1961) Filter cake, kraal manure and compost. S Afr Sugar J 45:979–983

    Google Scholar 

  • Dwivedi RS (1995) Development of molasses and alcohol-based chemical industries. Sugarcane: agro-industrial alternatives. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp 174–198. isbn:81-204-0948-5

    Google Scholar 

  • EFSA (2008) Xylitol chewing gum/pastilles and reduction of the risk of tooth decay—Scientific substantiation of a health claim related to xylitol chewing gum/pastilles and reduction the risk of tooth decay. EFSA J 6(11):852. https://doi.org/10.2903/j.efsa.2008.852

    Article  Google Scholar 

  • EFSA (2011) Scientific opinion on the substantiation of health claims related to the sugar replacers xylitol, sorbitol, mannitol, maltitol, lactitol, isomalt, erythritol, D-tagatose, isomaltulose, sucralose and polydextrose and maintenance of tooth mineralisation by decreasing tooth demineralisation, and reduction of post-prandial glycaemic responses. EFSA J 9(4):2076. https://doi.org/10.2903/j.efsa.2011.2076

    Article  CAS  Google Scholar 

  • Evans TH, Hibbert H (1947) Bacterial polysaccharides, Scientific Reports Series No. 6. Sugar Research Foundation, New York

    Google Scholar 

  • Fadel M, Keera AA, Mouafi FE, Kahil T (2013) High level ethanol from sugar cane molasses by a new thermo tolerant Saccharomyces cerevisiae strain in industrial scale. Biotechnol Res Int 2013:253286. https://doi.org/10.1155/2013/253286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo KY, Lee LK, Hameed BH (2013a) Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate. Bioresour Technol 134:166–172

    Article  CAS  PubMed  Google Scholar 

  • Foo KY, Lee LK, Hameed BH (2013b) Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate. Bioresour Technol 134:166–172

    Article  CAS  PubMed  Google Scholar 

  • Gebre H, Fisha K, Kindeya T, Gebremichal T (2015) Synthesis of furfural from bagasse. Int Lett Chem Phys Astron 57:72–84. https://doi.org/10.18052/www.scipress.com/ILCPA.57.72. SciPress Ltd, Switzerland.

    Article  Google Scholar 

  • Gopal AR, Kammen DM (2009) Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol. Environ Res Lett 4:044005. (5pp). https://doi.org/10.1088/1748-9326/4/4/044005

    Article  CAS  Google Scholar 

  • Goswami PC, Singh HD, Baruah JN (1984) Curr Sci 53(17):917

    CAS  Google Scholar 

  • Gould BS (1947) Chemical compounds formed from sugar by molds. Scientific Reports Series No. 7. Sugar Research Foundation, New York

    Google Scholar 

  • Gupta SC, Shukla JP (1968).Utilization of by-products and wastes from sugar factories by cellulosic fermentation. In: Proceedings of the 13th Congress ISSCT (Taiwan)

    Google Scholar 

  • Hatt HH (1961) Sucrose and the chemical industry. In: Proceedings of the Queensland Society Sugar Cane Technologists, pp 11–19

    Google Scholar 

  • Ito H, Miki T, Saito S, Kamoda M (1989) Seito Gijustu Kenkyukaishi. 37 (May issue), p 19

    Google Scholar 

  • Jain H, Mulay S (2014) A review on different modes and methods for yielding a pentose sugar: xylitol. Int J Food Sci Nutr 65(2):135–143. https://doi.org/10.3109/09637486.2013.845651. PMID 24160912

    Article  CAS  PubMed  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2006) Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrucckii. Process Biochem 41(4):759–763

    Article  CAS  Google Scholar 

  • Kaur R (2016) Value-added chemicals from lignin and hemicelluloses fractions of sugarcane bagasse. Thesis. Punjab Agricultural University, Ludhiana, p 135

    Google Scholar 

  • Kelly FHC (1977) A feasibility study on the production of ethanol from sugar cane. Report to the Queensland Department of Commercial and Industrial Development, Brisbane. 212 pp.

    Google Scholar 

  • Khan R, Konowicz PA (2000) Sugar, sugar derivatives. Wiley Online Library. https://doi.org/10.1002/0471238961.1921070111080114.a01

  • Kort (1983) The industrial utilization of sugar and mill by-products (a literature survey). Sugar Milling Research Institute, Durban. Annual Publication, approx. 200 pp.

    Google Scholar 

  • Kuan SS, Chou JC (1963) Methane gas production. Taiwan Sugar 10(4):17–20

    Google Scholar 

  • La Fromageot D (1965) Saccharose en Nutrition Animal (le Poulet). Documentation Scientifique du Cedus, Paris

    Google Scholar 

  • Li L, Yan L, Shen F, Qiu M, Qi X (2017) Mechanocatalytic production of lactic acid from glucose by ball milling. Catalysts 2017(7):170. https://doi.org/10.3390/catal7060170

    Article  CAS  Google Scholar 

  • Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9(4)

    Google Scholar 

  • Mathur S, Srivastava JK, Mathur SN (1988) Res. & industry (New Delhi) 33(2):151

    Google Scholar 

  • Merz V (1951) New process for the extraction of cane wax. Intern Sugar J 53:11–10

    Google Scholar 

  • Mickenautsch S, Yengopal V (2012a) Anticariogenic effect of xylitol versus fluoride—a quantitative systematic review of clinical trials. Int Dent J 62(1):6–20. https://doi.org/10.1111/j.1875-595X.2011.00086.x. PMID 22251032

    Article  PubMed  Google Scholar 

  • Mickenautsch S, Yengopal V (2012b) Effect of xylitol versus sorbitol: a quantitative systematic review of clinical trials. Int Dent J 62(4):175–188. https://doi.org/10.1111/j.1875-595X.2011.00113.x. PMID 23016999

    Article  PubMed  Google Scholar 

  • Moundlic J (1979) Can fermentation alcohol be substituted for wood as a cooking fuel? UNIDO workshop on fermentation alcohol, Vienna. Paper ID/WG 293/28, 12 pp

    Google Scholar 

  • Nee C-I (1964) Bagasse utilization. Taiwan Sugar 11(3):14–23

    Google Scholar 

  • Nee CI, Hsieh WC (1968) Feasibility study on furfural and structural board from bagasse paper. In: 13th ISSCT Congress (Taiwan)

    Google Scholar 

  • Nikodinovic J, MaciejGuzik R, RameshBabu S, Werker A, Kenny KT (2013) EO, in Advances in Applied Microbiology, 84, 139–200, 7.1 Molasses

    Google Scholar 

  • Okaru AO, Lachenmeier DW (2017) The food and beverage occurrence of furfuryl alcohol and myrcene—two emerging potential human carcinogens? Toxics 5(1):9. https://doi.org/10.3390/toxics5010009

    Article  CAS  PubMed Central  Google Scholar 

  • Osipow L, Snell FD, Finchler A (1957) Sugar esters. J Am Oil Chem Soc 34:185–188

    Article  CAS  Google Scholar 

  • Owen WL (1951) Solvent extracted filter press mud for plat food. Sugar 46(1):34–36

    Google Scholar 

  • Patarau JM (1982) By-products of the cane sugar industry: an introduction to their industrial usage. 2nd edn. Elsevier Scientific Publishing Company, Amsterdam, 365 pp

    Google Scholar 

  • Patel AA, Patel SR (1983) Synthesis and characterization of furfural-acetone polymers. Eur Polym J 19(3):231–234

    Article  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54(4):559–568

    Article  CAS  PubMed  Google Scholar 

  • Pittenburg PS (1947), Sugar and sugar derivatives in pharmacy, Scientific Reports Series No. 5. Sugar Research Foundation, New York

    Google Scholar 

  • Pominski J, Spadaro JJ, Vix HLE (1957) Extraction of wax from U.S. sugar cane mud. Sugar J 20(2):17–38

    CAS  Google Scholar 

  • Priya K, Kaur J (2018) Molasses based media for biomass production of baker’s yeast. Int J Microbiol Res 10(12):1429–1430

    Google Scholar 

  • Prescott SC, Dunn CG (1949) Industrial microbiology, vol. 2. 2nd edn. McGraw-Hill, New York. 565 + 578 pp

    Google Scholar 

  • Rabelo SC, Carrere H, Maciel Filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102(17):7887–7895. https://doi.org/10.1016/j.biortech.2011.05.081

    Article  CAS  PubMed  Google Scholar 

  • Rainey TJ (2009) A study of the permeability and compressibility properties of bagasse pulp. Queensland University of Technology, Brisbane

    Google Scholar 

  • Reference Manual (2012) Policy on the use of xylitol in caries prevention 33(6):42–44. Accessed 14 Mar 2012

    Google Scholar 

  • Reimann RH, Smith CG (1991) Sucrolin—a new lignin from sugar cane bagasse. In: Chemicals. Food and Agriculture Organization of United Nations, Durban

    Google Scholar 

  • Rezende CA, de Lima MA, Maziero P, de Azevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roa Engel CA, Straathof AJJ, Zijlmans TW, van Gulik WM, van der Wielen LAM (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78(3):379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues C, Vandenberghe LPS, Woiciechowski AL, de Oliveira J, Letti LAJ, Soccol CR (2017) Production and application of lactic acid. Current developments in biotechnology and bioengineering, production, isolation and purification of industrial products, pp 543–556. https://doi.org/10.1016/B978-0-444-63662-1.00024-5

  • Sansoucy R (1973) Bagasse as a source of roughage in molasses based diets. Cited by Preston T.R. (1974). Sugarcane as the basis for intensive animal production in the tropics. Proceedings of the conference on the animal feeds of tropical and subtropical origin. London Publications Tropical Products Institute, London

    Google Scholar 

  • Sethy A (2013).B. Tech project report on preparation of oxalic acid from molasses for partial fulfillment of the requirements for the degree of Bachelor of Technology in Chemical Engineering Submitted by: Roll Number—109CH0030 under the guidance of: Prof PradipRath Department of Chemical Engineering, National Institute of Technology, Rourkela

    Google Scholar 

  • Shearer A (1948) Sugar cane wax, its properties and uses. In: Proceedings of the 15th conference Queensland Society of Sugar Cane Technologists, pp 127–159

    Google Scholar 

  • Show PL, Oladele KO, Siew QY, Zakry FAA, Lan JC-W, Ling TC (2015) Overview of citric acid production from Aspergillus niger. Front Life Sci 8(3):271–283

    Article  CAS  Google Scholar 

  • Singh GB, Solomon S (1995) Sugarcane: agro-industrial alternatives. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, p 556. isbn:81-204-0948-5

    Google Scholar 

  • Singh Punjab (1995) The processing of sugarcane biomass and by-products for animal feed. In: Sugarcane: agro-industrial alternatives. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp 214–225. isbn:81-204-0948-5

    Google Scholar 

  • Sivasubramanium V (2006) Recovery of chemicals from press-mud—a sugar industry waste. Indian Chem Eng Sect A 48(3):160–163

    Google Scholar 

  • Singh A, Lal UR, Mukhtar HM, Singh PS, Shah G, Dhawan RK (2015) Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn Rev 9(17):45–54. https://doi.org/10.4103/0973-7847.156340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söderling E (2009) Controversies around xylitol. Eur J Dent 3(2):81–82. PMC 2676064. PMID 19421385

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon S (2011) Sugarcane by-products based industries in India. Sugar Tech 13:408–416

    Article  CAS  Google Scholar 

  • Sood HC (1992) Bhartiya sugar 23

    Google Scholar 

  • Sutili FK, Ruela HS, Nogueira DDO (2015) Enhanced production of fructose ester by biocatalyzed continuous flow process. Sustain Chem Process 3:6. https://doi.org/10.1186/s40508-015-0031-8

    Article  CAS  Google Scholar 

  • Tan-Soetedjo JNM, van de Bovenkamp HH, Abdilla RM, Rasrendra CB, van Ginkel J, Heeres HJ (2017) Experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid and 5-hydroxymethylfurfural using sulfuric acid in water. Ind Eng Chem Res 56(45):13228–13239. https://doi.org/10.1021/acs.iecr.7b01611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AK (2000) From raw sugar to raw materials. Chem Innov 30:45–48

    CAS  Google Scholar 

  • Thampy RT, Kuloor NR (1959) Products from sucrose. ChemAge India 10(1):37–52

    CAS  Google Scholar 

  • Tran G (2015) Sugarcane press mud. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/563. Last updated on May 27, 2015, 18:02

  • Tracy SE (2019) Tasty waste: industrial fermentation and the creative destruction of MSG. Food Culture Society 22(5):548–565. https://doi.org/10.1080/15528014.2019.1638117

    Article  Google Scholar 

  • Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA (2015) Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 55(11):1514

    Article  CAS  PubMed  Google Scholar 

  • Vallejos ME, Chade M, Mereles EB, Bengoechea DI, Brizuela JG, EstebanFelissia F, Area MC (2016) Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crop Prod 91:161–169

    Article  CAS  Google Scholar 

  • Wang Z-M, Li L, Xiao K-J, Wu J-Y (2009) Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity. Bioresour Technol 100(4):1687–1690

    Article  CAS  PubMed  Google Scholar 

  • Western AM (1979) Small scale paper making. Intermediate Technology Industrial Services, Rugby. 202 pp

    Google Scholar 

  • Weyman M (1974) Guide for planning pulp and paper enterprises. FAO, Rome. 379 pp

    Google Scholar 

  • Wiggins LF (1960) Sugar and its industrial applications, Royal Institute of Chemistry (London). Lectures, Monographs, Reports, No. 5

    Google Scholar 

  • Wong S, Ngadi N, Inuwa IM, Hassan O (2018) Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review. J Clean Prod 175:361–375

    Article  CAS  Google Scholar 

  • Yadav RL, Solomon S (2006) Potential of developing sugarcane by-product based industries in India. Sugar Tech 8(2):104–111. https://doi.org/10.1007/BF02943642

    Article  Google Scholar 

  • Yazdizadeh M, Jafari M, Nasr R, Safekordi A (2016) A new catalyst for the production of furfural from bagasse. RSC Adv, 61

    Google Scholar 

  • Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60(4):1198–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P. (2020). Sugar Industry: A Hub of Useful Bio-Based Chemicals. In: Mohan, N., Singh, P. (eds) Sugar and Sugar Derivatives: Changing Consumer Preferences. Springer, Singapore. https://doi.org/10.1007/978-981-15-6663-9_11

Download citation

Publish with us

Policies and ethics