Skip to main content

Analyses of Second World War Skeletal Remains Using a Forensic Approach

  • Chapter
  • First Online:
Forensic DNA Typing: Principles, Applications and Advancements

Abstract

This chapter presents analyses of skeletal remains from World War II using a forensic approach. Aged bones are challenging samples of biological material for DNA typing because their DNA content is very low and greatly degraded. The exceptional risk of contamination and the presence of inhibitors further limit the success of DNA typing. Because the DNA content is so limited, aged skeletons are exposed to contamination by people involved in excavation, anthropological analyses, and genetic testing. To prevent and track potential contamination by contemporary DNA, a number of standard precautions are used and they are described. The composition of bones and teeth and their degradation process is discussed. In addition to morphological structure, special attention is paid to factors affecting the preservation of DNA in old bones and teeth. Based on the literature reviewed and some analyses performed, the chapter summarizes which skeletal elements are most suitable for investigating World War II skeletal remains. It discusses how to clean and grind bone and tooth samples, how DNA can be extracted from the powder obtained, and how DNA quality and quantity can be determined for extracts using real-time quantification. The genetic markers most frequently examined in aged DNA and the advantages of new, high-performing sequencing techniques for the development and study of aged DNA are described. Using innovative methods that may help in retrieving higher-quality and increased data makes it possible to investigate more degraded DNA. Storing samples is especially important in laboratories engaged in forensic genetics. Efficient long-term bone storage is necessary to guarantee sample stability across time so that new markers as well as new technologies can be used for future retesting. The results of some aged bone sample storage studies are presented. The chapter concludes with a presentation of World War II victim identifications performed in Slovenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Asfi M, McNevin D, Mehta B, Power D, Gahan ME, Daniel R (2018) Assessment of the precision ID ancestry panel. Int J Legal Med 132:1581–1594

    Article  PubMed  Google Scholar 

  • Alberti F, Gonzalez J, Paijmans JLA (2018) Optimized DNA sampling of ancient bones using computed tomography scans. Mol Ecol Resour 18:1196–1208

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Andelinović Š, Martin P (2001) DNA typing from skeletal remains: evaluation of multiplex and megaplex STR systems on DNA isolated from bone and teeth samples. Croat Med J 42:260–266

    CAS  PubMed  Google Scholar 

  • Amory S, Huel R, Bilić A, Loreille O, Parsons TJ (2012) Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int Genet 6:398–406

    Article  CAS  PubMed  Google Scholar 

  • Anchordoquyn TJ, Molina MC (2007) Frontiers in clinical research preservation of DNA. Cell Preserv Tech 5:180–188

    Article  Google Scholar 

  • Anderung C, Persson P, Bouwman A, Elburg R, Götherström A (2008) Fishing for ancient DNA. Forensic Sci Int Genet 2:104–107

    Article  PubMed  Google Scholar 

  • Anslinger K, Weichhold G, Keil W, Bayer B, Eisenmenger W (2001) Identification of the skeletal remains of Martin Bormann by mtDNA analysis. Int J Legal Med 114:194–196

    Article  CAS  PubMed  Google Scholar 

  • Ballou S, Stolorow M (2013) The biological evidence preservation handbook: best practices for evidence handlers. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, pp 9–25

    Book  Google Scholar 

  • Barta JL, Monroe C, Kemp BM (2014) Mitochondrial DNA preservation across 3000-years-old northern fur seal ribs is not related to bone density: implications foe forensic investigations. Forensic Sci Int 239:11–18

    Article  CAS  PubMed  Google Scholar 

  • Baum DA, Futuyma DJ, Hoekstra HE, Lenski RE, Moore JA, Peichel CL et al (2013) The Princeton guide to evolution. Princeton University Press, Princeton, NJ, pp 477–479

    Google Scholar 

  • Biesecker LG, Bailey-Wilson JE, Ballantyne J, Baum H, Bieber FR, Brenner C et al (2005) DNA identification after the 9/11 World Trade Center attack. Science 310:1122–1123

    Article  CAS  PubMed  Google Scholar 

  • Brenner CH, Weir BS (2003) Issues and strategies in the DNA identification of World Trade Center victims. Theoret Popul Biol 63:173–178

    Article  CAS  Google Scholar 

  • Burger J, Hummel S, Hermann B, Henke W (1999) DNA preservation: a microsatellite-DNA study on ancient skeletal remains. Electrophoresis 20:1722–1728

    Article  CAS  PubMed  Google Scholar 

  • Camposa PF, Craig OE, Turner-Walker G, Peacock E, Willerslev E, Gilbert MTP (2012) DNA in ancient bone - where is it located and how should we extract it? Ann Anat 194:7–16

    Article  CAS  Google Scholar 

  • Chaitanya L, Zupanič Pajnič I, Walsh S, Balažic J, Zupanc T, Kayser M (2017) Bringing colour back after 70 years: predicting eye and hair colour from skeletal remains of World War II victims using the HIrisPlex system. Forensic Sci Int Genet 26:48–57

    Article  CAS  PubMed  Google Scholar 

  • Coulson-Thomas YM, Norton AL, Coulson-Thomas VJ, Florencio-Silva R, Ali N, Elmrghni S et al (2015) DNA and bone structure preservation in medieval human skeletons. Forensic Sci Int 251:186–194

    Article  CAS  PubMed  Google Scholar 

  • Diepenbroek M, Strobl C, Niederstätter H, Zimmermann B, Szargut M, Zielinska G et al (2018) The phylogenetic analyses of the human remains found in the Nazi German death camp as a proof of the Holocaust. In: The 11th Haploid Markers Conference: Inferring Ancestry from DNA, 17–19 May, 2018, Bydgoszcz, Poland

    Google Scholar 

  • Edson SM, Ross JP, Coble MD, Parsons TJ, Barritt SM (2004) Naming the dead - confronting the realities of rapid identification of degraded skeletal remains. Forensic Sci Rev 16:64–89

    Google Scholar 

  • Espregueira T, Smidt Mogensen H, Børsting C, Morling N (2016) Frequencies of HID-ion ampliseq ancestry panel markers among Greenlanders. Forensic Sci Int Genet 24:60–64

    Article  CAS  Google Scholar 

  • Fattorini P, Caccio S, Gustincich S, Altamura B, Graziosi G (1988) Sex determination from skeleton: a new method using a DNA probe. Acta Med Leg Soc (Leige) 39(2):201–205

    Google Scholar 

  • Ferenc M (2008) Topografija evidentiranih grobišč (Topography of documented mass graves). In: Dežman J (ed) Poročilo Komisije vlade Republike Slovenije za reševanje vprašanj prikritih grobišč 2005-2008. Družina, Ljubljana, pp 7–27

    Google Scholar 

  • Friš EL, Grdina S, Podovšovnik E, Zupanc T, Zupanič Pajnič I (2019) Comparison of DNA yield after long-term storage of Second World War bone samples. Forensic Sci Int Genet Suppl Ser 7:117

    Article  Google Scholar 

  • Fulton LT (2012) Ancient DNA - methods and protocols: setting up an ancient DNA laboratory. Humana Press Inc, Totowa, NJ, pp 1–11

    Book  Google Scholar 

  • Gaillard C, Strauss F (2000) Eliminating DNA loss and denaturation during storage in plastic microtubes. Int Biotechnol Lab 6:24

    Google Scholar 

  • Geršak ŽM, Zupanič Pajnič I, Črešnar M, Zupanc T (2019) Determination of DNA yield rates in six different skeletal elements in ancient bones. Forensic Sci Int Genet Suppl Ser 7:120

    Article  Google Scholar 

  • Gilbert MTP, Rudbeck L, Willerslev E (2005) Biochemical and physical correlates of DNA contamination in archaeological bone and teeth excavated at Matera, Italy. J Archaeol Sci 32:785–793

    Article  Google Scholar 

  • Grdina S, Friš EL, Podovšovnik E, Zupanc T, Zupanič Pajnič I (2019) Storage of Second World War bone samples: bone fragments versus bone powder. Forensic Sci Int Genet Suppl Ser 7:175

    Article  Google Scholar 

  • Hansen HB, Damgaard PB, Margaryan A, Stenderup J, Lynnerup N, Willerslev E et al (2017) Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS One 12(1):e0170940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartman D, Drummer O, Eckhoff C, Scheffer JW, Stringer P (2011) The contribution of DNA to the disaster victim identification (DVI) effort. Forensic Sci Int 205:52–58

    Article  CAS  PubMed  Google Scholar 

  • Higgins D, Austin JJ (2013) Teeth as a source of DNA for forensic identification of human remains: a review. Sci Justice 53:433–441

    Article  CAS  PubMed  Google Scholar 

  • Higgins D, Rohrlach AB, Kaidonis J (2015) Differential nuclear and mitochondrial DNA preservation in post-mortem teeth with implications for forensic and ancient DNA studies. PLoS One 10:e0126935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001) Ancient DNA. Nat Rev Genet 2:353–359

    Article  CAS  PubMed  Google Scholar 

  • Hollard C, Keyser C, Delabarde T, Gonzalez A, Vilela Lamego C, Zvénigorosky V, Ludes B (2017) Case report: on the use of the HID-Ion AmpliSeq Ancestry Panel in a real forensic case. Int J Legal Med 131:351–358

    Article  CAS  PubMed  Google Scholar 

  • Höss M, Jaruga P, Zastawny TH, Dizdaroglu M, Pääbo S (1996) DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res 24:1304–1307

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubel A, Spindler R, Skubitz AP (2014) Storage of human hiospecimens: selection of the optimal storage temperature. Biopreserv Biobank 12:165–175

    Article  PubMed  Google Scholar 

  • Hummel S (2003) Ancient DNA typing - methods, strategies and applications. Springer, Berlin, pp 225–227

    Book  Google Scholar 

  • Irwin JA, Just RS, Loreille OM, Parsons TJ (2012) Characterization of a modified amplification approach for improved STR recovery from severely degraded skeletal elements. Forensic Sci Int Genet 6:578–587

    Article  CAS  PubMed  Google Scholar 

  • Iwamura ESM, Soares-Vieira JA, Muñoz DR (2004) Human identification and analysis of DNA in bones. Rev Hosp Clin Fac Med S Paulo 59:383–388

    Article  PubMed  Google Scholar 

  • Jakubowska J, Maciejewska A, Pawłowski R (2012) Comparison of three methods of DNA extraction from human bones with different degrees of degradation. Int J Legal Med 126:173–178

    Article  PubMed  Google Scholar 

  • Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF (2008) New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res 18:830–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayser M (2015) Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet 18:33–48

    Article  CAS  PubMed  Google Scholar 

  • Kayser M, de Knjiff P (2011) Improving human forensics through advances in genetics, genomics and molecular biology. Nat Rev Genet 12:179–192

    Article  CAS  PubMed  Google Scholar 

  • Kendall C, Høier Eriksen AM, Kontopoulos I, Collins MJ, Turner-Walker G (2018) Diagenesis of archaeological bone and tooth. Paleogeogr Palaeocl 491:21–37

    Article  Google Scholar 

  • Keyser-Tracqui C, Ludes B (2005) Methods for the study of ancient DNA. In: Carracedo A (ed) Forensic DNA typing protocols. Humana Press Inc, New York, NY, pp 253–264

    Google Scholar 

  • Kidd KK, Speed WC, Pakstis AJ, Furtado MR, Fang R, Madbouly A et al (2014) Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci Int Genet 10:23–32

    Article  CAS  PubMed  Google Scholar 

  • Kishore R, Hardy WR, Anderson VJ, Sanchez NA, Buoncristiani MR (2006) Optimization of DNA extraction from low-yield and degraded samples using the biorobot EZ1 and biorobot M48. J Forensic Sci 51:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Knapp M, Lalueza-Fox C, Hofreiter M (2015) Re-inventing ancient human DNA. Investig Genet 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosoy R, Nassir R, Tian C, White PA, Butler LM, Silva G et al (2009) Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 30:69–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Krenke BE, Nassif N, Sprecher CJ, Knox C, Schwandt M, Storts DR (2008) Developmental validation of a real-time PCR assay for the simultaneous quantification of total human and male DNA. Forensic Sci Int Genet 3:14–21

    Article  CAS  PubMed  Google Scholar 

  • Larmuseau MHD, Vanderheyden N, Van Geystelen A, van Oven M, Kayser M, Decorte R (2014) Increasing phylogenetic resolution still informative for Y chromosomal studies on West - European populations. Forensic Sci Int Genet 9:179–185

    Article  CAS  PubMed  Google Scholar 

  • Larmuseau MHD, Otten GPPL, Decorte R, Van Damme P, Moisse M (2017) Defining Y-SNP variation among the Flemish population (Western Europe) by full genome sequencing. Forensic Sci Int Genet 31:e12–e16

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Crouse CA, Kline MC (2010) Optimizing storage and handling of DNA extracts. Forensic Sci Rev 22:131–144

    CAS  PubMed  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

  • Loreille OM, Diegoli TM, Irwin JA, Coble MD, Parsons TJ (2007) High efficiency DNA extraction from bone by total demineralization. Forensic Sci Int Genet 1:91–195

    Article  Google Scholar 

  • Malmstrom H (2007) Ancient DNA as a means to investigate the European Neolithic. Doctoral dissertation, Uppsala University, Uppsala, Sweden

    Google Scholar 

  • Mansour H, Krebs O, Sperhake JP, Augustin C, Koehne T, Amling M et al (2018) Cementum as a source of DNA in challenging forensic cases. J Forensic Legal Med 54:76–81

    Article  Google Scholar 

  • McElderry JP, Kole MR, Morris MD (2011) Repeated freeze-thawing of bone tissue affects Raman bone quality measurements. J Biomed Opt 16(071407):1–4

    Google Scholar 

  • Mehta B, Daniel R, Phillips C, McNevin D (2017) Forensically relevant SNaPshot® assays for human DNASNP analysis: a review. Int J Legal Med 131:21–37

    Article  PubMed  Google Scholar 

  • Miloš A, Selmanović A, Smajlović L, Huel RLM, Katzmarzyk C, Rizvić A, Parsons JP (2007) Success rates of nuclear short tandem repeat typing from different skeletal elements. Croat Med J 48:486–493

    PubMed  PubMed Central  Google Scholar 

  • Misner LM, Halvorson AC, Dreier JL, Ubelaker DH, Foran DR (2009) The correlation between skeletal weathering and DNA quality and quantity. J Forensic Sci 54:822–828

    Article  CAS  PubMed  Google Scholar 

  • Montellius K, Lindblom B (2012) DNA analysis in disaster victim identification. Forensic Sci Med Pathol 8:140–147

    Article  CAS  Google Scholar 

  • Montpetit SA, Fitch IT, O’Donnell PT (2005) A simple automated instrument for DNA extraction in forensic casework. J Forensic Sci 50:555–563

    Article  CAS  PubMed  Google Scholar 

  • Morild I, Hamre SS, Huel R, Parsons TJ (2015) Identification of missing Norwegian World War II soldiers, in Karelia Russia. J Forensic Sci 60:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Mundorff A, Davoren JM (2014) Examination of DNA yield rates for different skeletal elemenets at increasing post mortem intervals. Forensic Sci Int Genet 8:55–63

    Article  CAS  PubMed  Google Scholar 

  • Mundorff AZ, Bartelink EJ, Mar-Cash E (2009) DNA preservation in skeletal elements from the world trade center disaster: recommendations for mass fatality management. J Forensic Sci 54:739–745

    Article  CAS  PubMed  Google Scholar 

  • Nagy M, Otremba P, Krüger C, Bergner-Greiner S, Anders P, Henske B, Prinz M, Roewer L (2005) Optimization and validation of a fully automated silica-coated magnetic beads technology in forensics. Forensic Sci Int 152:13–22

    Article  CAS  PubMed  Google Scholar 

  • Obal M, Zupanič Pajnič I, Gornjak Pogorelc B, Zupanc T (2019) Different skeletal elements as a source of DNA for genetic identification of Second World War victims. Forensic Sci Int Genet Suppl Ser 7:27

    Article  Google Scholar 

  • Ossowski A, Kuś M, Brzeziński P, Prüffer J, Piątek J, Zielińska G (2013) Example of human individual identification from World War II gravesite. Forensic Sci Int 233:179–192

    Article  PubMed  Google Scholar 

  • Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A 86:1939–1943

    Article  PubMed  PubMed Central  Google Scholar 

  • Pääbo S (1990) Amplifying ancient DNA. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR-protocols and amplifications-a laboratory manual. Academic, San Diego, CA, pp 159–166

    Google Scholar 

  • Pääbo S, Poinar H, Serre D (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Article  CAS  PubMed  Google Scholar 

  • Palo JU, Hedman M, Soderholm N, Sajantila A (2007) Repatriation and identification of Finnish World War II soldiers. Croat Med J 48:528–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parson W, Dür A (2007) EMPOM - a forensic mtDNA database. Forensic Sci Int Genet 1:88–92

    Article  PubMed  Google Scholar 

  • Pereira V, Mogensen HS, Børsting C, Morling N (2017) Evaluation of the precision ID ancestry panel for crime case work: a SNP typing assay developed for typing of 165 ancestral informative markers. Forensic Sci Int Genet 28:138–145

    Article  CAS  PubMed  Google Scholar 

  • Phillips C, Salas A, Sánchez JJ, Fondevila M, Gómez-Tato A, Alvarez-Dios J et al (2007) Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int Genet 4:273–280

    Article  Google Scholar 

  • Phillips C, Prieto L, Fondevila M, Salas A, Gómez-Tato A, Alvarez-Dios J et al (2009) Ancestry analysis in the 11-M Madrid bomb attack investigation. PLoS One 4:e6583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilli E, Boccone S, Agostino A, Virgili A, D’Errico G, Lari M et al (2018) From unknown to known: identification of the remains at the mausoleum of fosse Ardeatine. Sci Justice 58:469–478

    Article  PubMed  Google Scholar 

  • Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S, Alpaslan-Roodenberg S et al (2015) Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One 10(6):e0129102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poinar HN, Hoss M, Bada JL, Pääbo S (1996) Amino acid racemisation and the preservation of ancient DNA. Science 272:864–866

    Article  CAS  PubMed  Google Scholar 

  • Pokines JT (2016) The effects of experimental freeze-thaw cycles to bone as a component of subaerial weathering. J Archaeol Sci Rep 6:594–602

    Google Scholar 

  • Prinz M, Carracedo A, Mayr WR, Morling N, Parsons TJ, Sajantila A et al (2007) DNA Commission of the International Society for Forensic Genetics (ISFG): recommendations regarding the role of forensic genetics for disaster victims identification (DVI). Forensic Sci Int Genet 1(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Pruvost M, Schwarz R, Correia VB (2007) Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci U S A 104:739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puente M, Santos C, Fondevila M, Manzo L, EUROFORGEN-NoE Consortium, Carracedo Á, Lareu MV et al (2016) The global AIMs Nano set: a 31-plex SnaPshot assay of ancestry-informative SNPs. Forensic Sci Int Genet 22:81–88

    Article  PubMed  CAS  Google Scholar 

  • Putkonen MT, Palo JU, Cano JM, Hedman M, Sajantila A (2010) Factors affecting the STR amplification success in poorly preserved bone samples. Investig Genet 1:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quatrehomme G, Unité Police d’Identification de Victimes de Catastrophes, Toupenay S, Delabarde T, Padovani B, Alunni V (2019) Forensic answers to the 14th of July 2016 terrorist attack in Nice. Int J Legal Med 133:277–287

    Article  PubMed  Google Scholar 

  • Ralf A, van Oven M, Zhong K, Kayser M (2015) Simultaneous analysis of hundreds of Y-chromosomal SNPs for high-resolution paternal lineage classification using targeted semiconductor sequencing. Hum Mutat 36:151–159

    Article  CAS  PubMed  Google Scholar 

  • Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756–1762

    Article  CAS  PubMed  Google Scholar 

  • Romanini C, Catelli ML, Borosky A, Pereira R, Romero M, Salado Puerto M et al (2012) Typing short amplicon binary polymorphisms: supplementary SNP and Indel genetic information in the analysis of highly degraded skeletal remains. Forensic Sci Int Genet 6:469–476

    Article  CAS  PubMed  Google Scholar 

  • Romanini C, Romero M, Salado Puerto M, Catelli L, Phillips C, Pereira R et al (2015) Ancestry informative markers: inference of ancestry in aged bone samples using an autosomal AIM-Indel multiplex. Forensic Sci Int Genet 16:58–63

    Article  CAS  PubMed  Google Scholar 

  • Salamon M, Tuross N, Arensburg B, Weiner S (2005) Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A 102:13783–13788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampierto ML, Gilbert MT, Lao O, Caramelli D, Lari M, Berranpetit J, Lalueza-Fox C (2006) Tracking down human contamination in ancient human teeth. Mol Biol Evol 23:1801–1807

    Article  Google Scholar 

  • Schwartz TR, Schwartz EA, Mieszerski L, McNally L, Kobilinsky L (1991) Characterization of deoxyribonucleic acid (DNA) obtained from teeth subjected to various environmental conditions. J Forensic Sci 36:979–990

    Article  CAS  PubMed  Google Scholar 

  • Silvia AL, Shugarts N, Smith J (2017) A preliminary assessment of the ForenSeq™ FGx System: next generation sequencing of an STR and SNP multiplex. Int J Legal Med 131:73–86

    Article  PubMed  Google Scholar 

  • Smith CI, Chamberlain AT, Riley MS, Stringer C, Collins MJ (2003) The thermal history of human fossils and the likelihood of successful DNA amplification. J Hum Evol 45:203–217

    Article  PubMed  Google Scholar 

  • Tasker E, LaRue B, Beherec C, Gangitano D, Hughes-Stamm S (2017) Analysis of DNA from post-blast pipe bomb fragments for identification and determination of ancestry. Forensic Sci Int Genet 28:195–202

    Article  CAS  PubMed  Google Scholar 

  • Turner-Walker G (2008) The chemical and microbial degradation of bones and teeth. In: Pinhasi R, Mays S (eds) Advances in human palaeopathology. John Wiley and Sons Ltd, New York, NY, pp 1–29

    Google Scholar 

  • Valgren C, Wester S, Hansson O (2008) A comparison of three automated DNA purification methods in forensic casework. Forensic Sci Int Genet Suppl Ser 1:76–77

    Article  Google Scholar 

  • Walsh S, Liu F, Ballantyne KN, van Oven M, Lao O, Kayser M (2011) IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet 5:170–180

    Article  CAS  PubMed  Google Scholar 

  • Walsh S, Liu F, Wollstein A, Kovatsi L, Ralf A, Kosiniak-Kamysz A et al (2013) The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci Int Genet 7:98–115

    Article  CAS  PubMed  Google Scholar 

  • Willuwiet S, Roewer L (2007) Y chromosome haplotype reference database (YHRD): update. Forensic Sci Int Genet 1:83–87

    Article  Google Scholar 

  • Zietkiewicz E, Witt M, Daca P, Zebracka-Gala J, Goniewicz M, Jarząb B et al (2012) Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet 53:41–60

    Article  CAS  PubMed  Google Scholar 

  • Zupanc T, Balažic J, Štefanič B, Zupanič Pajnič I (2013) Performance of the Human Quantifiler, the Investigator Quantiplex, and the Investigator ESSplex Plus kit for quantification and nuclear DNA typing of old skeletal remains. Rom J Legal Med 21:119–124

    Article  Google Scholar 

  • Zupanič Pajnič I (2008) Molekularno genetska identifikacija domobranskih žrtev (Molecular genetic identification of Slovenian home guard victims). Zdrav Vestn 77:745–750

    Google Scholar 

  • Zupanič Pajnič I (2011) Visoko učinkovita metoda ekstrakcije DNA iz skeletnih ostankov (Highly efficient DNA extraction method from skeletal remains). Zdrav Vestn 80:171–181

    Google Scholar 

  • Zupanič Pajnič I (2013a) A comparative analysis of the AmpFlSTR identifiler and PowerPlex 16 autosomal short tandem repeat (STR) amplification kits on the skeletal remains excavated from Second World War mass graves in Slovenia. Revista de medicinæalegalæa 21:73–78

    Google Scholar 

  • Zupanič Pajnič I (2013b) Genetic identification of Second World War victim’s skeletal remains. Lap Lambert Academic Publishing, Saarbrucken

    Google Scholar 

  • Zupanič Pajnič I (2016) Extraction of DNA from human skeletal material. In: Goodwin W (ed) Forensic DNA typing protocols, methods in molecular biology, vol 1420. Springer Science & Business Media, LLC, New York, NY, pp 89–108

    Chapter  Google Scholar 

  • Zupanič Pajnič I (2017) Evaluation of the quality of bone powder for successful STR typing of human skeletal remains. Revista de medicinæ alegalæa 25:92–98

    Google Scholar 

  • Zupanič Pajnič I, Gornjak-Pogorelc B, Balažic J (2010) Molecular genetic identification of skeletal remains from the Second world war Konfin I mass grave in Slovenia. Int J Legal Med 124:307–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Zupanič Pajnič I, Gornjak Pogorelc B, Balažic J, Zupanc T, Štefanič B (2012) Highly efficient nuclear DNA typing of the World War II skeletal remains using three new autosomal short tandem repeat amplification kits with the extended European Standard Set of loci. Croat Med J 53:17–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zupanič Pajnič I, Debska M, Gornjak Pogorelc B, Vodopivec Mohorčič K, Balažic J, Zupanc T et al (2016a) Highly efficient automated extraction of DNA from old and contemporary skeletal remains. J Forensic Legal Med 37:78–86

    Article  Google Scholar 

  • Zupanič Pajnič I, Petaros A, Balažic J, Geršak K (2016b) Searching for the mother missed since the Second World War. J Forensic Legal Med 44:138–142

    Article  Google Scholar 

  • Zupanič Pajnič I, Zupanc T, Balažic J, Geršak ŽM, Stojković O, Skadrić I et al (2017) Prediction of autosomal STR typing success in ancient and Second World War bone samples. Forensic Sci Int Genet 27:17–26

    Article  PubMed  CAS  Google Scholar 

  • Zupanič Pajnič I, Bajželj M, Gornjak-Pogorelc B, Inkret J, Balažic J (2018a) Identification of the Second World War victim using autosomal and Y - STR markers. In: The 11th Haploid Markers Conference: Inferring ancestry from DNA, 17–19 May, 2018, Bydgoszcz, Poland

    Google Scholar 

  • Zupanič Pajnič I, Obal M, Bajželj M, Gornjak-Pogorelc B, Inkret J, Balažic J (2018b) Victims of the biggest Second World War family killing in Slovenia identified via autosomal and haploid markers. In: The 11th Haploid Markers Conference: Inferring ancestry from DNA, 17–19 May, 2018, Bydgoszcz, Poland

    Google Scholar 

  • Zupanič Pajnič I, Gornjak Pogorelc B, Zupanc T (2019) Next generation sequencing technology in Second World victim identification. Forensic Sci Int Genet Suppl Ser 7:123

    Article  Google Scholar 

  • Zupanič Pajnič I, Obal M, Zupanc T (2020) Identifying victims of the largest Second World War family massacre in Slovenia. Forensic Sci Int 306:110056

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the Slovenian Government Commission on Concealed Mass Graves for its support for excavations involving World War II victims. Some of the studies described in this chapter received financial support from the Slovenian Research Agency (the project “Determination of the most appropriate skeletal elements for molecular genetic identification of aged human remains,” J3-8214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Zupanič Pajnič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zupanič Pajnič, I. (2020). Analyses of Second World War Skeletal Remains Using a Forensic Approach. In: Shrivastava, P., Dash, H.R., Lorente, J.A., Imam, J. (eds) Forensic DNA Typing: Principles, Applications and Advancements . Springer, Singapore. https://doi.org/10.1007/978-981-15-6655-4_8

Download citation

Publish with us

Policies and ethics