Skip to main content

Brassicaceae Plants Response and Tolerance to Nutrient Deficiencies

  • Chapter
  • First Online:
The Plant Family Brassicaceae

Abstract

The plant family Brassicaceae commonly known as the cabbage family or mustard family has several agriculturally important crops. The major vegetable crops include cauliflower, cabbage, broccoli, kale, Brussels sprouts, turnip, radish, etc., and major oilseed crops are mustard and canola. Every essential nutrient has an inevitable role to play in a plant’s growth and development; however some may be critical towards some crops such as in providing resistance to pests and diseases, or in terms of improving quality of the crop. Among macronutrients, S is one of them, very much essential to the plants of Brassicaceae family as it has got prominent effect on oilseed crops. Striking a perfect balance between N and S is important in growth and development of Brassicaceae plants. An understanding on the role of nutrients in the growth and development of plants belonging to Brassicaceae family is essential to identify their requirements for nutrients. This would provide an insight into identification of the symptoms exhibited as a result of nutrient deficiencies. The chapter deals with the nutrient deficiencies in Brassicaceae plants, and their responses and tolerance to stresses such as nutrient deficiencies. Hence, a better knowledge on these would aid in enhancing productivity of Brassicaceae plants by properly managing nutrient deficiencies and related abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah M, Dubousset L, Meuriot F, Etienne P, Avice JC, Ourry A (2010) Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J Exp Bot 61(10):2635–2646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdin MZ, Ahmad A, Khan N, Khan I, Jamal A, Iqbal M (2003) Sulphur interaction with other nutrients. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Kluwer, Dordrecht, pp 359–374

    Google Scholar 

  • Andre´s-Cola´s N, Perea-Garcı´a A, de Andre´s SM, Dorcey E, Garcia-Molina A et al (2013) Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings. Metallomics 5:1234–1246

    Google Scholar 

  • Anjum AN, Gill SS, Omar S, Ahmad I, Duarte AC, Pereira E (2012) Improving growth and productivity of oleiferous brassicas under changing environment: significance of Nitrogen and sulphur nutrition and underlying mechanisms. Sci World J. https://doi.org/10.1100/2012/657808

    Article  Google Scholar 

  • Arnon DI, Stout PR (1939) An essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey LD, Grant CA (1990) Fertilizer placement studies on calcareous and non-calcareous chernozemic soils: growth, P-uptake, oil content and yield of Canadian rape. Comm Soil Sci Plant Anal 21(17–18):2089–2104

    CAS  Google Scholar 

  • Ballesta MMC, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14:11607–11625. https://doi.org/10.3390/ijms140611607

    Article  CAS  Google Scholar 

  • Bergmann W (1992) Nutritional disorders of plants. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Blake-Kalff MMA, Zhao FJ, Hawkesford MJ, McGrath SP (2001) Using plant analysis to predict yield losses caused by sulphur deficiency. Ann Appl Biol 138(1):123–127

    CAS  Google Scholar 

  • Billard V, Ourry A, Maillard A, Garnica M, Coquet L et al (2014) Copper-deficiency in brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins. PLoS ONE 9(10):e109889. https://doi.org/10.1371/journal.pone.0109889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collett MG, Stegelmeier BL, Tapper BA (2014) Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato-or cholangiotoxic in cattle? J Agric Food Chem 62:7370–7375

    CAS  PubMed  Google Scholar 

  • Collins RP, Harris PJC, Bateman MJ, Henderson J (2008) Effect of calcium and potassium nutrition on yield, ion content and salt tolerance of Brassica campestris (rapa). J Plant Nutr 31(8):1461–1481. https://doi.org/10.1080/01904160802208444

    Article  CAS  Google Scholar 

  • Coulombe J, Villeneuve S, Lamy P, Yelle S, Bélec C, Tremblay N (1998) Evaluation of soil and petiole sap nitrate quick tests for broccoli in Québec. Acta Hortic 506:147–152

    Google Scholar 

  • D’Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice J-C, Trouverie J (2014) Evidence for proteomic and metabolic adaptations associated to alterations of seed yield and quality in sulphur-limited Brassica napus L. Mol Cell Proteomics 13:1165–1183

    PubMed  PubMed Central  Google Scholar 

  • Ding F, Wang X, Shi Q, Wang M, Yang F, Gao, Q (2008) Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient Chinese cabbage (Brassica chinensis L.). Agri Sci China (2):168–179

    Google Scholar 

  • Ekbladh G, Writter E (2010) Determination of the critical nitrogen concentration of white cabbage. Eur J Agron 33(4):276–284

    Google Scholar 

  • Fazili IS, Jamal A, Ahmad S, Masoodi M, Khan JS, Abdin MZ (2008) Interactive effect of sulfur and nitrogen on nitrogen accumulation and harvest in oilseed crops differing in nitrogen assimilation potential. J Plant Nutr 31(7):1203–1220

    CAS  Google Scholar 

  • Fismes J, Vong PC, Guckert A, Frossard E (2000) Influence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. European J Agron. 12(2):127–141

    Google Scholar 

  • Fohse D, Claassen H, Jungk A (1991) Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation-anion balance for phosphorus influx in seven plant species. Plant Soil 132:261–272

    Google Scholar 

  • Goldberg S (1997) Reactions of boron in soil. Plant Soil 193:35–48

    CAS  Google Scholar 

  • Grant CA, Bailey LD (1993) Fertility management in canola production. Can J Plant Sci 73:651–670

    CAS  Google Scholar 

  • Greenwood DJ, Stone DA (1998) Prediction and measurement of the secline in the critical potassium, the maximum potassium and total cation plant concentration during the growth of field/vegetable crops. Ann Bot 82:871–881

    CAS  Google Scholar 

  • Gupta RK, Abrol IP (1990) Salt-affected soils—their reclamation and management for crop production. Adv Soil Sci 12:233–275

    Google Scholar 

  • Hermans C, Johnson CN, Strasser RJ, Verbruggen N (2004) Physiological characterization of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355

    CAS  PubMed  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Ye Z, Bell WR (1996) The importance of sampling immature leaves for the diagnosis of boron deficiency in oilseed rape (Brassica napus cv Eureka). Plant Soil 183:187–198. https://doi.org/10.1007/BF00011434

  • Jung JY, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21:607–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karthika KS, Rashmi I, Parvathi MS (2018) Biological functions, uptake and transport of essential nutrients in relation to plant growth. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant nutrients and abiotic stress tolerance. Springer Nature Singapore Pte. Ltd., pp 1–49

    Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298. https://doi.org/10.1126/science.1132563e

    Article  CAS  PubMed  Google Scholar 

  • Kochian VL (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Ann Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  Google Scholar 

  • Koprivova A, Suter M, Op den Camp R, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaire and Gastal (1997) N uptake and distribution in plant canopies. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Berlin Heidelberg, pp 3–43

    Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Ann Rev Plant Physiol Plant Mol Biol 51:141–165

    CAS  Google Scholar 

  • Lopez-Berenguer C, Martínez-Ballesta MC, García-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174:321–328

    CAS  Google Scholar 

  • Lopez-Berenguer C, Martínez-Ballesta MC, Moreno DA, Carvajal M, García-Viguera C (2009) Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem 57:572–578

    CAS  PubMed  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109(1):7–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd. Academic Press Ltd., London

    Google Scholar 

  • Marschner H, Roemheld V (1994) Strategies of plants for acquisition of iron. Pl Soil 165:261–274

    CAS  Google Scholar 

  • McGrath SP, Zhao FJ (1996) Sulphur uptake, yield responses and the interactions between nitrogen and sulphur in winter oilseed rape (Brassica napus). J Agric Sci 126(1):53–62

    Google Scholar 

  • Muneer S, Lee B, Kim KY, Park SH, Zhang Q (2014) Involvement of sulphur nutrition in modulating iron deficiency responses in photosynthetic organelles of oilseed rape (Brassica napus L.). Photosynt Res 119:319–329. https://doi.org/10.1007/s11120-01-9953-8

  • Omirou MD, Papadopoulou KK, Papastylianou I, Constantinou M, Karpouzas DG, Asimakopoulos I, Ehaliotis C (2009) Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J Agric Food Chem 57:9408–9417

    CAS  PubMed  Google Scholar 

  • Pittman JK, Hirsch KD (2001) Regulation of CAX1, an Arabidopsis Ca2 + /H + antiporter. Identification of an N-terminal autoinhibitory domain. Plant Physiol 127(3):1020–1029

    Google Scholar 

  • Scherer HW (2008) Impact of sulfur on N2 fixation of legumes. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, The Netherlands, pp 43–54

    Google Scholar 

  • Schonhof I, Blankenburg D, Müller S, Krumbein A (2007) Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J Plant Nutr Soil Sci 170:65–72

    CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russian J. Plant Physiol 53(2):257–277

    CAS  Google Scholar 

  • Singh AP, Fridman Y, Holland, N, AckermanLavert M, Zananiri R, Jaillais Y, Henn A, Savaldi-Goldstein S (2018) Interdependent nutrient availability and steroid hormone signals facilitate root growth plasticity. Dev Cell 46, 59–72. e4. https://doi.org/10.1016/j.devcel.2018.06.002

  • Sinha AC, Jana PK, Mandal BB (1990) Effect of micronutrients on rapeseed grown on acid soils of Eastern India. Indian J Agron 35:126–130

    CAS  Google Scholar 

  • Spragg J (2016) Australian feed grain supply and demand report. JCS Solutions Pty Ltd., North Victoria, Australia, pp 1–42

    Google Scholar 

  • Steinbrenner AD, Agerbirk N, Orians CM, Chew FS (2012) Transient abiotic stresses lead to latent defense and reproductive responses over the Brassica rapa life cycle. Chemoecology 22:239–250

    CAS  Google Scholar 

  • Su T, Yu S, Zhang F, Yu Y, Zhang D, Zhao X, Wang W (2015) Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Rep 33:648–659

    CAS  Google Scholar 

  • Sung J, Yun H, Back S, Fernie AR, Kim XY, Lee Y, Lee S, Lee D, Kim J (2018) Changes in mineral nutrient concentrations and CN metabolism in cabbage shoots and roots following macronutrient deficiency. J Plant Nutr Soil Sci 181:777–786. https://doi.org/10.1002/jpln.201800001

    Article  CAS  Google Scholar 

  • Tandon HLS (2004) Fertilisers in Indian agriculture—from 20th to 21st century. New Delhi, Fertiliser Development and Consultation Organisation, p 239

    Google Scholar 

  • Troufflard S, Mullen W, Larson TR, Graham IA, Crozier A, Amtmann A, Armengaud P (2010) Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biol 10:172–185

    PubMed  PubMed Central  Google Scholar 

  • Tyagi NK (2000) Management of salt-affected soils. In: Singh GB, Sharma BR (eds) Fifty years of natural resource management research. Indian Council of Agricultural Research, New Delhi, pp 363–401

    Google Scholar 

  • Walker KC, Booth EJ (2003) Sulphur nutrition and oilseed quality. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Kluwer, Dordrecht, pp 323–339

    Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein–like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell Online 21:347–361

    CAS  Google Scholar 

  • Zhang D, Zhao H, Shi L, Xu F (2014) Physiological and genetic responses to boron deficiency in Brassica napus: a review. Soil Sci Plant Nutr 60(3):304–313. https://doi.org/10.1080/00380768.2014.893537

    Article  CAS  Google Scholar 

  • Zhu W, Zuo R, Zhou R, Huang J, Tang M, Cheng X, Liu Y, Tong C, Xiang Y, Dong C, Liu S (2016) Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus. Front Plant Sci. https://doi.org/10.3389/fpls2016.01353

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Karthika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthika, K.S., Philip, P.S., Neenu, S. (2020). Brassicaceae Plants Response and Tolerance to Nutrient Deficiencies. In: Hasanuzzaman, M. (eds) The Plant Family Brassicaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-6345-4_11

Download citation

Publish with us

Policies and ethics