Skip to main content

Microbial Biofilm: Formation, Quorum Sensing, and Its Applications in Plant Disease Management

  • Chapter
  • First Online:
Emerging Trends in Plant Pathology

Abstract

In search of an eco-friendly plant disease management, a ray of hope for sustainability was created after the recognition of microbial strategy on plant surfaces was adapted under adverse environmental conditions in the early 1970s, which are the microbial aggregations termed as biofilms. The assemblage of microbes on plant surfaces are formed due to microbial adhesion, growth, and expansion process, which in turn depends on surface tension, texture, and wettability. The microbial cells in biofilm communicates by various signaling molecules in order to modulate their functional mechanism by controlled release of antibiotic and toxins and in regulation of gene expression through quorum sensing. The microbes that are capable of forming biofilms include various bacteria, yeast, fungi, and symbionts which are not only antagonistic to phytopathogens but also help in enhancement of plant growth and development by acting as a sink for nutrients as a function of site of colonization of plant parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl Environ Microbiol 64:3740–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An D, Danhorn T, Fuqua C, Parsek MR (2006) Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc Natl Acad Sci U S A 103:3828–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annous B, Fratamico P, Smith JL (2009) Quorum sensing in biofilms: why bacteria behave the way they do. J Food Sci 74:101–111

    CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Raaijmakers JM (2005) Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiol Ecol 52:59–69

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  PubMed  Google Scholar 

  • Bogino PC, Oliva MDLM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14(8):15838–15859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burdman S, Okon Y, Jurkevitch E (2000) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26:91–110

    Article  CAS  PubMed  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fuiimoto D, Mazzola M, Bangera G, Kim D (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140

    Article  CAS  PubMed  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422. https://doi.org/10.1146/annurev.micro.61.080706.093316

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilm: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a gram positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida: love at first sight. Microbiology 148:341–343

    Article  CAS  PubMed  Google Scholar 

  • Fett WF, Cooke PH (2003) Reduction of Escherichia coli O157: H7 and Salmonella on laboratory-inoculated alfalfa seed with commercial citrus-related products. J Food Prot 66:1158–1165

    Article  CAS  PubMed  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giobbe S, Marceddu S, Scherm B, Zara G, Mazzarello VL, Budroni M, Migheli Q (2007) The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. Fed Eur Microbiol Soc 7:1389–1398

    CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting Bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Haggag WM (2007) Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. Afr J Biotechnol 6:1568–1577

    CAS  Google Scholar 

  • Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol J 42:1199–1209

    Article  CAS  Google Scholar 

  • Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Liu H, Genin S, Schell MA, Denny TP (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiplesurfaces and for natural transformation and virulence. Mol Microbiol 46:427–437

    Article  CAS  PubMed  Google Scholar 

  • Kiely PD (2006) Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microb Ecol 51:257–266

    Article  CAS  PubMed  Google Scholar 

  • Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility and biofilm formation in Bacillus subtilisis dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh JA, Coplin DL (1992) Exopolysaccharide in plant–bacterial interactions. Annu Rev Microbiol 46:307–346

    Article  CAS  PubMed  Google Scholar 

  • Loon LCV (2007) Plant responses to plant growth promoting rhizobacteria. Eur J Plant Pathol 199:243–254

    Article  CAS  Google Scholar 

  • Marques LLR, De Boer SH, Ceri H, Olsen ME (2003) Evaluation of biofilms formed by Clavibacter michiganensis sub sp. sepedonicus. Phytopathology 93:57

    Google Scholar 

  • Monier JM, Lindow SE (2003) Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci U S A 100:15977–15982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monroe D (2007) Looking for chinks in the armor of bacterial biofilms. PLoS biology 5:e307. https://doi.org/10.1371/journal.pbio.0050307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migheli Q (2001) Genetically modified biocontrol agents: environmental impact and risk analysis. Journal of Plant Pathology 83:47–56

    CAS  Google Scholar 

  • Newman KL, Almeida RP, Purcell AH, Lindow SE (2003) Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl Environ Microbiol 69:7319–7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman KL, Almeida RP, Purcell AH, Lindow SE (2004) Cell–cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc Natl Acad Sci U S A 101:1737–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo Thi NA, Naumann D (2007) Investigating the heterogeneity of cell growth in microbial colonies by FTIR microspectroscopy. Anal Bioanal Chem 387:1769–1777

    Article  CAS  PubMed  Google Scholar 

  • Ortu G, Demontis MA, Budroni M, Goyard S, d’Enfert C, Migheli Q (2005) Study of biofilm formation in Candida albicans may help understanding the biocontrol capability of a flor strain of Saccharomyces cerevisiae against the phytopathogenic fungus Penicillium expansum. J Plant Pathol 87(Special issue):300. (abstract)

    Google Scholar 

  • Palkov’a Z, V’achov’a L (2006) Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev 30:806–824

    Article  CAS  Google Scholar 

  • Peer VR, Schippers B (1992) Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Netherlands. J Plant Pathol 98(2):129

    Google Scholar 

  • Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers JM, De Vos P, Hofte M (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103:1007–1020

    Article  CAS  PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ (2004) Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of blood stream isolates of Candida. Clin Microbiol Infect 10:11–23

    Article  CAS  PubMed  Google Scholar 

  • Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial pathogens. Annu Rev Phytopathol 34:131–151

    Article  CAS  PubMed  Google Scholar 

  • Ramey-Hartung B, Koutsoudis MD, von Bodman SB, Fuqua C (2005) Biofilm formation in plant-microbe associations. Current Opinion in Microbiology 7:602–609. https://doi.org/10.1016/j.mib.2004.10.014

    Article  CAS  Google Scholar 

  • Ramey BE, Matthysse AG, Fuqua C (2004) The FNR-type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Mol Microbiol 52:1495–1511

    Article  CAS  PubMed  Google Scholar 

  • Rezzonico F, Zala M, Keel C, Duffy B, Moenne-Loccoz Y, Defago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetyl phloroglucinol really synonymous with higher plant protection. New Phytol 173:861–872

    Article  CAS  PubMed  Google Scholar 

  • Rojas CM, Ham JH, Deng WL, Doyle JJ, Collmer A (2002) HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A 99:13142–13147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford ST, Van Kessel JC, Shao Y, Bassler BL (2011) AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev 25:397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafique M, Hayat K, Mukhtar T, Anna Khan AA, Afridi MS, Hussain T, Sultn T, MFH M, Imran M, Choudhury HJ (2015) Bacterial biofilm formation and its role against agricultural pathogens. In: Mendez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs, pp 373–382

    Google Scholar 

  • Scherm B, Ortu G, Muzzu A, Budroni M, Arras G, Migheli Q (2001) Genetically modified biocontrol agents: environmental impact and risk analysis. J Plant Pathol 83:47–56

    Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Wagner EG (1999) The plant-growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol (11):7292–7300

    Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  CAS  PubMed  Google Scholar 

  • Trowbridge J, Ludmer LM, Riddle VD, Levy CS, Barth WF (1999) Candida lambica polyarthritis in a patient with chronic alcoholism. J Rheumatol 26:1846–1848

    CAS  PubMed  Google Scholar 

  • Watrick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2673

    Article  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: Molecular ecology of rhizosphere microorganisms: biotechnology and release of GMOs. VCH, New York, pp 1–18

    Google Scholar 

  • West PV, Morris BM, Reid B, Appiah AA, Osborne MC, Campbell TA, Shepherd SJ (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant-Microbe Interact 15:790–798

    Article  PubMed  Google Scholar 

  • Williams A, Wilkinson A, Krehenbrink M, Russo DM (2008) Glucomannan- mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J Bacteriol 190:4706–4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rayanoothala, P., Divya, M., Mahapatra, S., Das, S. (2021). Microbial Biofilm: Formation, Quorum Sensing, and Its Applications in Plant Disease Management. In: Singh, K.P., Jahagirdar, S., Sarma, B.K. (eds) Emerging Trends in Plant Pathology . Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4_18

Download citation

Publish with us

Policies and ethics