Skip to main content

Rhizosphere Legacy: Plant Root Interactions with the Soil and Its Biome

  • Chapter
  • First Online:
Rhizosphere Biology: Interactions Between Microbes and Plants

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Existing rhizosphere literature is united in the shared concept that the rhizosphere represents a dynamic system, which is strongly influenced by the passage of time. This concept gives rise to the idea of “legacy”, in that the rhizosphere of one plant generation leaves a footprint in the soil system, which affects the generations that follow. However, the literature definitions of “legacy” presented to date focus only on alterations in the soil microbiome and the resultant effects of these changes on following generations of plants.

We have reviewed existing concepts around the rhizosphere and its legacy and proposed a broader consideration of the rhizosphere legacy, which incorporates physical, chemical and biological changes that potentially endure beyond the root that created it.

Given the complexity of the rhizosphere and the interactions of legacy effects across the physical, chemical and biological characteristics of the soil, a range of techniques is needed to sample and analyse this environment. Techniques employed to date depend upon the area of research expertise being undertaken and predominantly rely on destructive methodologies. Recent advances in micro-X-ray computed tomography has alleviated the constraints of destructive sampling, but still requires complementation with other techniques to determine the extent of the rhizosphere legacy. Existing limitations in this complementarity remains a challenge to rhizosphere research. In order to advance our understanding of the rhizosphere and its legacy, there needs to be continued advancement in the methods we employ, which pay homage to the fact that the rhizosphere remains a fluid and ever-changing dynamic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Hamdeh NH, Reeder RC (2000) Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci Soc Am J 64:1285–1290

    Article  CAS  Google Scholar 

  • Ahmed S, Klassen TN, Keyes S et al (2016) Imaging the interaction of roots and phosphate fertiliser granules using 4d x-ray tomography. Plant Soil 401:125–134. https://doi.org/10.1007/s11104-015-2425-5

    Article  CAS  Google Scholar 

  • Aitken R (1992) Relationships between extractable al, selected soil properties, pH buffer capacity and lime requirement in some acidic Queensland soils. Soil Res 30:119–130

    Article  CAS  Google Scholar 

  • Alsaadawi IS, Al-Uqaili JK, Alrubeaa AJ et al (1986) Allelopathic suppression of weed and nitrification by selected cultivars of Sorghum bicolor (L.) Moench. J Chem Ecol 12:209–219

    Article  PubMed  CAS  Google Scholar 

  • Amaranthus M, Perry D (1989) Interaction effects of vegetation type and pacific madrone soil inocula on survival, growth, and mycorrhiza formation of Douglas-fir. Can J For Res 19:550–556

    Article  Google Scholar 

  • Angus J, Bolger T, Kirkegaard J et al (2006) Nitrogen mineralisation in relation to previous crops and pastures. Soil Res 44:355–365

    Article  CAS  Google Scholar 

  • Atkinson JA, Pound MP, Bennett MJ et al (2019) Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol 55:1–8. https://doi.org/10.1016/j.copbio.2018.06.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C et al (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa l.) cultivars. Plant Biol 3:139–148. https://doi.org/10.1055/s-2001-12905

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates plant. Cell Environ 32:666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x

    Article  CAS  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    Article  PubMed  CAS  Google Scholar 

  • Baldock J, Skjemstad J (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710

    Article  CAS  Google Scholar 

  • Barber SA (1979) Corn residue management and soil organic matter. Agron J 71:625–627

    Article  Google Scholar 

  • Barber D, Martin J (1976) The release of organic substances by cereal roots into soil. New Phytol 76:69–80

    Article  CAS  Google Scholar 

  • Bartlett J, Doner H (1988) Decomposition of lysine and leucine in soil aggregates: adsorption and compartmentalization. Soil Biol Biochem 20:755–759

    Article  CAS  Google Scholar 

  • Bauke SL, von Sperber C, Siebers N et al (2017) Biopore effects on phosphorus biogeochemistry in subsoils. Soil Biol Biochem 111:157–165

    Article  CAS  Google Scholar 

  • Bekkara F, Jay M, Viricel MR et al (1998) Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant Soil 203:27–36. https://doi.org/10.1023/a:1004365913726

    Article  Google Scholar 

  • Belnap J, Hawkes CV, Firestone MK (2003) Boundaries in miniature: two examples from soil. Bioscience 53:739–749

    Article  Google Scholar 

  • Bengough AG, Young IM (1993) Root elongation of seedling peas through layered soil of different penetration resistances. Plant Soil 149:129–139

    Article  Google Scholar 

  • Berendsen RL, Vismans G, Yu K et al (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhadoria P (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7

    Google Scholar 

  • Bloem J, Hopkins DW, Benedetti A (2005) Microbiological methods for assessing soil quality. CABI, Wallingford

    Book  Google Scholar 

  • Blossfeld S, Gansert D (2012) The use of planar optodes in root studies for quantitative imaging. In: Mancuso S (ed) Measuring roots. Springer, Berlin/Heidelberg, pp 83–92. https://doi.org/10.1007/978-3-642-22067-8_5

    Chapter  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J et al (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744. https://doi.org/10.1128/aem.02188-07

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  PubMed  CAS  Google Scholar 

  • Cambardella CA (2006) Aggregation and organic matter. In: Encyclopedia of soil science. Taylor and Francis, Boca Raton, FL, pp 52–55

    Google Scholar 

  • Canadell J, Jackson R, Ehleringer J et al (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  PubMed  CAS  Google Scholar 

  • Carminati A, Vetterlein D, Weller U et al (2009) When roots lose contact. Vadose Zone J 8:805–809

    Article  Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11. https://doi.org/10.1002/jpln.201000085

  • Chan K, Roberts W, Heenan D (1992) Organic carbon and associated soil properties of a red earth after 10 years of rotation under different stubble and tillage practices. Soil Res 30:71–83

    Article  Google Scholar 

  • Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: an overview. Wiley, New York

    Google Scholar 

  • Cieslinski G, Van Rees KCJ, Szmigielska AM et al (1997) Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions. J Plant Nutr 20:753–764. https://doi.org/10.1080/01904169709365291

    Article  CAS  Google Scholar 

  • Cuddington K (2011) Legacy effects: the persistent impact of ecological interactions. Biol Theory 6:203–210

    Article  Google Scholar 

  • Czarnes S, Hallett P, Bengough A et al (2000) Root-and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci 51:435–443

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. https://doi.org/10.1023/a:1020809400075

    Article  CAS  Google Scholar 

  • Daly KR, Keyes SD, Masum S, Roose T (2016) Image-based modelling of nutrient movement in and around the rhizosphere. J Exp Bot 67:1059–1070

    Google Scholar 

  • Daly KR, Cooper LJ, Koebernick N et al (2017) Modelling water dynamics in the rhizosphere. Rhizosphere 4:139–151

    Article  Google Scholar 

  • Daly KR, Keyes SD, Roose T (2018a) Determination of macro-scale soil properties from pore scale structures: image-based modelling of poroelastic structures. Proc R Soc A Math Phys Eng Sci 474. https://doi.org/10.1098/rspa.2017.0745

  • Daly KR, Tracy SR, Crout NMJ et al (2018b) Quantification of root water uptake in soil using x-ray computed tomography and image-based modelling. Plant Cell Environ 41:121–133. https://doi.org/10.1111/pce.12983

    Article  PubMed  CAS  Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition - a quantitative approach. Plant Soil 156:1–20

    Article  Google Scholar 

  • De Gryze S, Jassogne L, Six J et al (2006) Pore structure changes during decomposition of fresh residue: X-ray tomography analyses. Geoderma 134:82–96

    Article  Google Scholar 

  • Degens BP (1997) Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review. Aust J Soil Res 35:431–460

    Article  Google Scholar 

  • Demuner AJ, Barbosa LC, Chinelatto LS Jr et al (2005) Sorption and persistence of sorgoleone in red-yellow latosol. Quim Nova 28:451–455

    Article  CAS  Google Scholar 

  • Dessaux Y, Grandclément C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21:266–278

    Article  PubMed  CAS  Google Scholar 

  • Drew M (1975) Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490

    Article  CAS  Google Scholar 

  • Elliott E (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils 1. Soil Sci Soc Am J 50:627–633

    Article  Google Scholar 

  • Elliott E, Coleman D (1988) Let the soil work for us. Ecol Bull 39:23–32

    Google Scholar 

  • Emerson W, McGarry D (2003) Organic carbon and soil porosity. Soil Res 41:107–118

    Article  Google Scholar 

  • Fan Y, Miguez-Macho G, Jobbágy EG et al (2017) Hydrologic regulation of plant rooting depth. Proc Natl Acad Sci 114:10572–10577

    Article  PubMed  CAS  Google Scholar 

  • Farooq M, Bajwa AA, Cheema SA et al (2013) Application of allelopathy in crop production. Int J Agric Biol 15:1367–1378

    Google Scholar 

  • Farrar J, Hawes M, Jones D et al (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837. https://doi.org/10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2

    Article  Google Scholar 

  • Feller C, Beare M (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116

    Article  CAS  Google Scholar 

  • Flavel RJ (2014) Visualising and quantifying cereal root responses to phosphorus. University of New England

    Google Scholar 

  • Flavel RJ, Guppy CN, Tighe M et al (2012) Non-destructive quantification of cereal roots in soil using high-resolution x-ray tomography. J Exp Bot 63:2503–2511. https://doi.org/10.1093/jxb/err421

    Article  PubMed  CAS  Google Scholar 

  • Flavel RJ, Guppy CN, Tighe MK et al (2014) Quantifying the response of wheat (triticum aestivum l) root system architecture to phosphorus in an oxisol. Plant Soil 385:303–310. https://doi.org/10.1007/s11104-014-2191-9

    Article  CAS  Google Scholar 

  • Fletcher JS, Hegde RS (1995) Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3016

    Article  CAS  Google Scholar 

  • Frossard E, Achat DL, Bernasconi SM et al (2011) The use of tracers to investigate phosphate cycling in soil–plant systems. In: Phosphorus in action. Springer, Berlin, pp 59–91

    Chapter  Google Scholar 

  • Garbout A, Munkholm L, Hansen S et al (2012) The use of pet/ct scanning technique for 3d visualization and quantification of real-time soil/plant interactions. Plant Soil 352:113–127. https://doi.org/10.1007/s11104-011-0983-8

    Article  CAS  Google Scholar 

  • García JAL, Barbas C, Probanza A et al (2001) Low molecular weight organic acids and fatty acids in root exudates of two lupinus cultivars at flowering and fruiting stages. Phytochem Anal 12:305–311. https://doi.org/10.1002/pca.596

    Article  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  PubMed  CAS  Google Scholar 

  • Girvan MS, Campbell CD, Killham K et al (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313. https://doi.org/10.1111/j.1462-2920.2005.00695.x

    Article  PubMed  CAS  Google Scholar 

  • Golchin A, Oades J, Skjemstad J et al (1994) Soil structure and carbon cycling. Soil Res 32:1043–1068

    Article  Google Scholar 

  • Grose MJ, Gilligan CA, Spencer D et al (1996) Spatial heterogeneity of soil water around single roots: use of ct-scanning to predict fungal growth in the rhizosphere. New Phytol 133:261–272

    Article  PubMed  CAS  Google Scholar 

  • Grove S, Haubensak KA, Parker IM (2012) Direct and indirect effects of allelopathy in the soil legacy of an exotic plant invasion. Plant Ecol 213:1869–1882

    Article  Google Scholar 

  • Gupta VVSR, Knox OGG (2010) How best can we design rhizosphere plant-microbe interactions for the benefit of plant growth? In: The Rovira rhizosphere symposium - celebrating 50 years of rhizosphere research. The Crawford Fund, Deakin, ACT, pp 11–24

    Google Scholar 

  • Hassink J (1997) The capacity of soils to preserve organic c and n by their association with clay and silt particles. Plant Soil 191:77–87

    Article  CAS  Google Scholar 

  • Hawes MC, Brigham LA, Wen F et al (1998a) Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol 36:311–327

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Brigham LA, Wen F et al (1998b) Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol 36:311–327. https://doi.org/10.1146/annurev.phyto.36.1.311

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Curlango-Rivera G, Xiong Z et al (2012) Roles of root border cells in plant defense and regulation of rhizosphere microbial populations by extracellular DNA ‘trapping’. Plant Soil 355:1–16. https://doi.org/10.1007/s11104-012-1218-3

    Article  CAS  Google Scholar 

  • Helliwell JR, Sturrock CJ, Grayling KM et al (2013) Applications of x-ray computed tomography for examining biophysical interactions and structural development in soil systems: a review. Eur J Soil Sci 64:279–297. https://doi.org/10.1111/ejss.12028

    Article  CAS  Google Scholar 

  • Helliwell JR, Sturrock CJ, Mairhofer S et al (2017) The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface. Sci Rep 7:14875. https://doi.org/10.1038/s41598-017-14904-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henry A, Chaves NF, Kleinman PJ et al (2010) Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris l.) on soil phosphorus depletion in a low-input agro-ecosystem in Central America. Field Crop Res 115:67–78

    Article  Google Scholar 

  • Herridge DF (2011) Managing legume and fertiliser n for northern grains cropping. Grains Research and Development Corporation, Kingston

    Google Scholar 

  • Hiltner L (1904) Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hinsinger P (1998) Structure and function of the rhizosphere: mechanisms at the soil-root interface. Oleagineux Corps Gras Lipides 5:340–341

    CAS  Google Scholar 

  • Hinsinger P, Cloutier-Hurteau B, Jourdan C et al (2012) The roots of our soils. In: 8th symposium of the International Society of Root Research (ISRR) 2012: “Roots to the Future”

    Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol 46:1016–1022. https://doi.org/10.1259/0007-1285-46-552-1016

    Article  PubMed  CAS  Google Scholar 

  • Huang P (2004) Soil mineral-organic matter-microorganism interactions: fundamentals and impacts. Adv Agron 82:393–472

    Google Scholar 

  • Hughes M, Donnelly C, Crozier A et al (1999) Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Can J Bot 77:1311–1315. https://doi.org/10.1139/b99-077

    Article  CAS  Google Scholar 

  • Insam H (2001) Developments in soil microbiology since the mid 1960s. Geoderma 100:389–402

    Article  CAS  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR et al (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. https://doi.org/10.1007/bf00333714

    Article  PubMed  CAS  Google Scholar 

  • Juyal A, Otten W, Falconer R et al (2019) Combination of techniques to quantify the distribution of bacteria in their soil microhabitats at different spatial scales. Geoderma 334:165–174

    Article  Google Scholar 

  • Karwat H, Moreta D, Arango J et al (2017) Residual effect of BNI by Brachiaria humidicola pasture on nitrogen recovery and grain yield of subsequent maize. Plant Soil 420:389–406

    Article  CAS  Google Scholar 

  • Keyes SD, Daly KR, Gostling NJ et al (2013) High resolution synchrotron imaging of wheat root hairs growing in soil and image based modelling of phosphate uptake. New Phytol 198:1023–1029. https://doi.org/10.1111/nph.12294

    Article  PubMed  CAS  Google Scholar 

  • Killham K, Amato M, Ladd J (1993) Effect of substrate location in soil and soil pore-water regime on carbon turnover. Soil Biol Biochem 25:57–62

    Article  CAS  Google Scholar 

  • Kim T, Silk W (1999) A mathematical model for ph patterns in the rhizospheres of growth zones plant. Cell Environ 22:1527–1538

    Article  Google Scholar 

  • Kirkby C, Kirkegaard J, Richardson A et al (2011) Stable soil organic matter: a comparison of c: N: P: S ratios in Australian and other world soils. Geoderma 163:197–208

    Article  CAS  Google Scholar 

  • Knox OG, Gupta VV, Lardner R (2014) Field evaluation of the effects of cotton variety and gm status on rhizosphere microbial diversity and function in Australian soils. Soil Res 52:203–215

    Article  Google Scholar 

  • Koebernick N, Huber K, Kerkhofs E et al (2015) Unraveling the hydrodynamics of split root water uptake experiments using CT scanned root architectures and three dimensional flow simulations. Front Plant Sci 6:370. https://doi.org/10.3389/fpls.2015.00370

    Article  PubMed  PubMed Central  Google Scholar 

  • Kpomblekou A, Tabatabai MA (2003) Effect of low-molecular weight organic acids on phosphorus release and phytoavailability of phosphorus in phosphate rocks added to soils agriculture. Ecosyst Environ 100:275–284

    Article  Google Scholar 

  • Krull ES, Skjemstad JO, Baldock JA (2004) Functions of soil organic matter and the effect on soil properties. Cooperative Research Centre for Greenhouse Accounting, Canberra

    Google Scholar 

  • Kruse J, Abraham M, Amelung W et al (2015) Innovative methods in soil phosphorus research: a review. J Plant Nutr Soil Sci 178:43–88

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2002) Model for rhizodeposition and co2 efflux from planted soil and its validation by 14c pulse labelling of ryegrass. Plant Soil 239:87–102

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Raskatov A, Kaupenjohann M (2003) Turnover and distribution of root exudates of Zea mays. Plant Soil 254:317–327. https://doi.org/10.1023/A:1025515708093

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. In: Advances in agronomy, vol 88. Academic, New York, pp 35–66

    Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13. https://doi.org/10.1104/pp.109.1.7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot 66:2199–2210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mairhofer S, Zappala S, Tracy S et al (2013) Recovering complete plant root system architectures from soil via x-ray μ-computed tomography. Plant Methods 9:8. https://doi.org/10.1186/1746-4811-9-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Mairhofer S, Sturrock CJ, Bennett MJ et al (2015) Extracting multiple interacting root systems using x-ray micro computed tomography. Plant J 84:1034–1043. https://doi.org/10.1111/tpj.13047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCully ME (1999a) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Biol 50:695–718

    Article  CAS  Google Scholar 

  • McCully ME (1999b) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  PubMed  CAS  Google Scholar 

  • Merbach W, Mirus E, Knof G et al (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci 162:373–383

    Article  CAS  Google Scholar 

  • Mocali S, Benedetti A (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 161:497–505

    Article  PubMed  Google Scholar 

  • Mooney SJ (2002) Three-dimensional visualization and quantification of soil macroporosity and water flow patterns using computed tomography. Soil Use Manag 18:142–151. https://doi.org/10.1111/j.1475-2743.2002.tb00232.x

    Article  Google Scholar 

  • Mooney SJ, Pridmore TP, Helliwell J et al (2012) Developing x-ray computed tomography to non-invasively image 3-d root systems architecture in soil. Plant Soil 352:1–22

    Article  CAS  Google Scholar 

  • Morel JL, Habib L, Plantureux S et al (1991) Influence of maize root mucilage on soil aggregate stability. Plant Soil 136:111–119

    Article  Google Scholar 

  • Morris EC, Griffiths M, Golebiowska A et al (2017) Shaping 3d root system architecture. Curr Biol 27:R919–R930. https://doi.org/10.1016/j.cub.2017.06.043

    Article  PubMed  CAS  Google Scholar 

  • Munkholm LJ (2011) Soil friability: a review of the concept, assessment and effects of soil properties and management. Geoderma 167:236–246

    Article  Google Scholar 

  • Murphy BW (2014) Soil organic matter and soil function - review of the literature and underlying data, Canberra

    Google Scholar 

  • O'Donnell AG, Young IM, Rushton SP et al (2007) Visualization, modelling and prediction in soil microbiology. Nat Rev Microbiol 5:689

    Article  PubMed  CAS  Google Scholar 

  • Oswald SE, Menon M, Carminati A et al (2008) Quantitative imaging of infiltration, root growth, and root water uptake via neutron radiography. Vadose Zone J 7:1035–1047

    Article  Google Scholar 

  • Parfitt R, Giltrap D, Whitton J (1995) Contribution of organic matter and clay minerals to the cation exchange capacity of soils. Commun Soil Sci Plant Anal 26:1343–1355

    Article  CAS  Google Scholar 

  • Parker DR, Reichman SM, Crowley DE (2005) Metal chelation in the rhizosphere. Agronomy 48:57

    CAS  Google Scholar 

  • Paya AM, Silverberg J, Padgett J et al (2015) X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00274

  • Perry D, Molina R, Amaranthus M (1987) Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can J For Res 17:929–940

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789. https://doi.org/10.1038/nrmicro3109

    Article  CAS  Google Scholar 

  • Polain K, Guppy C, Knox O et al (2018) Determination of agricultural impact on soil microbial activity using δ18op hcl and respiration experiments. ACS Earth Space Chem 2:683–691. https://doi.org/10.1021/acsearthspacechem.8b00021

    Article  CAS  Google Scholar 

  • Priesack E, Kisser-Priesack G (1993) Modelling diffusion and microbial uptake of 13 c-glucose in soil aggregates. In: Soil structure/soil biota interrelationships. Elsevier, Amsterdam, pp 561–573

    Chapter  Google Scholar 

  • Puget P, Drinkwater LE (2001) Short-term dynamics of root- and shoot-derived carbon from a leguminous green manure. Soil Sci Soc Am J 65. https://doi.org/10.2136/sssaj2001.653771x

  • Qiao M, Xiao J, Yin H et al (2014) Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation. Chem Ecol 30:555–565

    Article  Google Scholar 

  • Rabbi SF, Wilson BR, Lockwood PV et al (2015) Aggregate hierarchy and carbon mineralization in two oxisols of New South Wales, Australia. Soil Tillage Res 146:193–203

    Article  Google Scholar 

  • Rabbi SMF, Daniel H, Lockwood PV et al (2016) Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity. Sci Rep 6:33012. https://doi.org/10.1038/srep33012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rabbi SMF, Tighe MK, Flavel RJ et al (2018) Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics. New Phytol 219:542–550. https://doi.org/10.1111/nph.15213

    Article  PubMed  CAS  Google Scholar 

  • Rasse DP, Smucker AJ (1998) Root recolonization of previous root channels in corn and alfalfa rotations. Plant Soil 204:203–212

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. https://doi.org/10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Rawls W, Pachepsky YA, Ritchie J et al (2003) Effect of soil organic carbon on soil water retention. Geoderma 116:61–76

    Article  CAS  Google Scholar 

  • Read DB, Bengough AG, Gregory PJ et al (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326

    Article  CAS  Google Scholar 

  • Rice CW (2002) Organic matter and nutrient dynamics. In: Encyclopedia of soil science, vol 2. Taylor and Francis, Boca Raton, pp 1180–1183

    Google Scholar 

  • Rivoal J, Hanson AD (1994) Metabolic control of anaerobic glycolysis: overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion. Plant Physiol 106:1179–1185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roose T, Keyes SD, Daly KR et al (2016) Challenges in imaging and predictive modeling of rhizosphere processes. Plant Soil 407:1–30. https://doi.org/10.1007/s11104-016-2872-7

    Article  CAS  Google Scholar 

  • Rosewell C, Loch R (2002) Estimation of the rusle soil erodibility factor. In: Soil physical measurement and interpretation for land evaluation, vol 5. CSIRO, Melbourne, p 360

    Google Scholar 

  • Rumpel C, Kogel-Knabner I (2011) Deep soil organic matter-a key but poorly understood component of terrestrial c cycle. Plant Soil 338:143–158. https://doi.org/10.1007/s11104-010-0391-5

    Article  CAS  Google Scholar 

  • Sauer D, Kuzyakov Y, Stahr K (2006) Spatial distribution of root exudates of five plant species as assessed by 14c labeling. J Plant Nutr Soil Sci 169:360–362. https://doi.org/10.1002/jpln.200621974

    Article  CAS  Google Scholar 

  • Schmidt S, Bengough AG, Gregory PJ et al (2012) Estimating root–soil contact from 3d x-ray microtomographs. Eur J Soil Sci 63:776–786. https://doi.org/10.1111/j.1365-2389.2012.01487.x

    Article  Google Scholar 

  • Schrumpf M, Kaiser K, Guggenberger G et al (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10:1675–1691. https://doi.org/10.5194/bg-10-1675-2013

    Article  CAS  Google Scholar 

  • Schulz H, Postma JA, Van Dusschoten D et al. (2012) 3D reconstruction of plant roots from MRI images. In: VISAPP (2), pp 24–33

    Google Scholar 

  • Schulz H, Postma JA, van Dusschoten D et al (2013) Plant root system analysis from mri images. In: Computer vision, imaging and computer graphics. Theory and application. Springer, Berlin, pp 411–425

    Chapter  Google Scholar 

  • Segal E, Kushnir T, Mualem Y et al (2008) Microsensing of water dynamics and root distributions in sandy soils. Vadose Zone J 7:1018–1026

    Article  Google Scholar 

  • Singh BK, Munro S, Potts JM et al (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155

    Article  Google Scholar 

  • Six J, Elliott E, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for c sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Conant R, Paul E et al (2002) Stabilization mechanisms of soil organic matter: implications for c-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Subbarao GV, Rondon M, Ito O et al (2007) Biological nitrification inhibition (bni)-is it a widespread phenomenon? Plant Soil 294:5–18

    Article  CAS  Google Scholar 

  • Subbarao G, Nakahara K, MdP H et al (2009) Evidence for biological nitrification inhibition in brachiaria pastures. Proc Natl Acad Sci 106:17302–17307

    Article  PubMed  CAS  Google Scholar 

  • Taina I, Heck R, Elliot T (2008) Application of x-ray computed tomography to soil science: a literature review. Can J Soil Sci 88:1–19

    Article  Google Scholar 

  • Tamburini F, Pfahler V, von Sperber C et al (2014) Oxygen isotopes for unraveling phosphorus transformations in the soil–plant system: a review. Soil Sci Soc Am J 78:38–46

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    Article  CAS  Google Scholar 

  • Toal M, Yeomans C, Killham K et al (2000) A review of rhizosphere carbon flow modelling. Plant Soil 222:263–281

    Article  CAS  Google Scholar 

  • Tracy SR, Black CR, Roberts JA et al (2012a) Quantifying the effect of soil compaction on three varieties of wheat (Triticum aestivum l.) using x-ray micro computed tomography (ct). Plant Soil 353:195–208. https://doi.org/10.1007/s11104-011-1022-5

    Article  CAS  Google Scholar 

  • Tracy SR, Black CR, Roberts JA et al (2012b) Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by x-ray micro-computed tomography. Ann Bot 110:511–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Tranter G, Minasny B, McBratney A et al (2007) Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use Manag 23:437–443

    Article  Google Scholar 

  • Tumlinson LG, Liu H, Silk WK et al (2008) Thermal neutron computed tomography of soil water and plant roots. Soil Sci Soc Am J 72:1234–1242

    Article  CAS  Google Scholar 

  • Udawatta RP, Gantzer CJ, Anderson SH et al (2008) Agroforestry and grass buffer effects on pore characteristics measured by high-resolution x-ray computed tomography. Soil Sci Soc Am J 72:295–304. https://doi.org/10.2136/sssaj2007.0057

    Article  Google Scholar 

  • Walker RL, Edwards AC, Maskell P et al (2012) The effect of co-composted cabbage and ground phosphate rock on the early growth and p uptake of oilseed rape and perennial ryegrass. J Plant Nutr Soil Sci 175:595–603

    Article  CAS  Google Scholar 

  • Wang P, Bi S, Wang S et al (2006) Variation of wheat root exudates under aluminum stress. J Agric Food Chem 54:10040–10046

    Article  PubMed  CAS  Google Scholar 

  • Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric co2 concentration. Plant Physiol 120:705–716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watt M, McCully ME, Kirkegaard JA (2003) Soil strength and rate of root elongation alter the accumulation of Pseudomonas spp. and other bacteria in the rhizosphere of wheat. Funct Plant Biol 30:483–491

    Article  PubMed  Google Scholar 

  • Watt M, Kirkegaard JA, Passioura JB (2006a) Rhizosphere biology and crop productivity—a review. Soil Res 44:299–317

    Article  Google Scholar 

  • Watt M, Silk WK, Passioura JB (2006b) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann Bot 97:839–855

    Article  PubMed  PubMed Central  Google Scholar 

  • Whipps J (1990) Carbon economy. In: The rhizosphere. Wiley, Chichester, pp 59–97

    Google Scholar 

  • Wildenschild D, Vaz C, Rivers M et al (2002) Using x-ray computed tomography in hydrology: systems, resolutions, and limitations. J Hydrol 267:285–297

    Article  Google Scholar 

  • Wu H, Pratley J, Lemerle D et al (2000) Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Aust J Agric Res 51:259–266

    Article  Google Scholar 

  • Wurst S, Ohgushi T (2015) Do plant-and soil-mediated legacy effects impact future biotic interactions? Funct Ecol 29:1373–1382

    Article  Google Scholar 

  • Xia J-H, Roberts JK (1994) Improved cytoplasmic ph regulation, increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low-oxygen environment. Plant Physiol 105:651–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xuan TD, Shinkichi T, Khanh TD et al (2005) Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Prot 24:197–206

    Article  Google Scholar 

  • York LM, Carminati A, Mooney SJ et al (2016) The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. J Exp Bot 67:3629–3643

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Zhao J, Wen T et al (2018) Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Crawford JW, Flavel RJ et al (2016a) A multi-scale lattice Boltzmann model for simulating solute transport in 3d x-ray micro-tomography images of aggregated porous materials. J Hydrol 541:1020–1029. https://doi.org/10.1016/j.jhydrol.2016.08.013

    Article  Google Scholar 

  • Zhang X, Crawford JW, Young IM (2016b) A lattice Boltzmann model for simulating water flow at pore scale in unsaturated soils. J Hydrol 538:152–160. https://doi.org/10.1016/j.jhydrol.2016.04.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver G. G. Knox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliver, I.C., Knox, O.G.G., Flavel, R.J., Wilson, B.R. (2021). Rhizosphere Legacy: Plant Root Interactions with the Soil and Its Biome. In: Gupta, V.V.S.R., Sharma, A.K. (eds) Rhizosphere Biology: Interactions Between Microbes and Plants. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6125-2_6

Download citation

Publish with us

Policies and ethics