Skip to main content

Decision Support System for Detection and Classification of Skin Cancer Using CNN

  • Conference paper
  • First Online:
Innovations in Computational Intelligence and Computer Vision

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1189))

Abstract

Skin cancer is one of the most deathful of all the cancers. It is bound to spread to different parts of the body on the off chance that it is not analyzed and treated at the beginning time. It is mostly because of the abnormal growth of skin cells, often develops when the body is exposed to sunlight. Furthermore, the characterization of skin malignant growth in the beginning time is a costly and challenging procedure. It is classified where it develops and its cell type. High Precision and recall are required for the classification of lesions. The paper aims to use MNIST HAM-10,000 dataset containing dermoscopy images. The objective is to propose a system that detects skin cancer and classifies it in different classes by using the convolution neural network. The diagnosing methodology uses image processing and deep learning model. The dermoscopy image of skin cancer undergone various techniques to remove the noise and picture resolution. The image count is also increased by using various image augmentation techniques. In the end, the transfer learning method is used to increase the classification accuracy of the images further. Our CNN model gave a weighted average precision of 0.88, a weighted recall average of 0.74, and a weighted F1 score of 0.77. The transfer learning approach applied using ResNet model yielded an accuracy of 90.51%

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ferlay et al., Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144(8), 1941–1953 (2019)

    Article  Google Scholar 

  2. G. Kasinathan et al., Automated 3-D lung tumor detection and classification by an active contour model and CNN classifier. Expert Syst. Appl. 134, 112–119 (2019)

    Article  Google Scholar 

  3. Z. Gao et al., HEp-2 cell image classification with deep convolutional neural networks. IEEE J. Biomed. Health Inf. 21(2), 416–428 (2016)

    Article  Google Scholar 

  4. P. Wang et al., Automatic cell nuclei segmentation and classification of cervical Pap smear images. Biomed. Signal Process. Control 48, 93–103 (2019)

    Article  Google Scholar 

  5. S. Sharma, S. Maheshwari, A. Shukla, An intelligible deep convolution neural network based approach for classification of diabetic retinopathy. Bio-Algorith. Med-Syst. 14(2) (2018)

    Google Scholar 

  6. K.M. Hosny, M.A. Kassem, M.M. Foaud, Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS ONE 14(5), e0217293 (2019)

    Article  Google Scholar 

  7. X. He et al., Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation. Technol. Health Care 26(S1), 307–316 (2018)

    Article  MathSciNet  Google Scholar 

  8. B. Harangi, Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 86, 25–32 (2018)

    Article  Google Scholar 

  9. T.J. Brinker et al., Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer 113, 47–54 (2019)

    Article  Google Scholar 

  10. T.J. Brinker et al., Skin cancer classification using convolutional neural networks: systematic review. J. Med. Int. Res. 20(10), e11936 (2018)

    Google Scholar 

  11. S.S. Han et al., Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Investig. Dermatol. 138(7), 1529–1538 (2018)

    Article  Google Scholar 

  12. H.A. Haenssle et al., Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

    Article  Google Scholar 

  13. M.A. Marchetti et al., Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J. Am. Acad. Dermatol. 78(2), 270–277 (2018)

    Article  Google Scholar 

  14. P. Tschandl et al., Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA dermatology 155(1), 58–65 (2019)

    Article  Google Scholar 

  15. N. Codella, V. Rotemberg, P. Tschandl, M.E. Celebi, S. Dusza, D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, H. Kittler, A. Halpern, Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC)” (2018). https://arxiv.org/abs/1902.03368

  16. P. Tschandl, C. Rosendahl, H. Kittler, The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018). https://doi.org/10.1038/sdata.2018.161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumil Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garg, R., Maheshwari, S., Shukla, A. (2021). Decision Support System for Detection and Classification of Skin Cancer Using CNN. In: Sharma, M.K., Dhaka, V.S., Perumal, T., Dey, N., Tavares, J.M.R.S. (eds) Innovations in Computational Intelligence and Computer Vision. Advances in Intelligent Systems and Computing, vol 1189. Springer, Singapore. https://doi.org/10.1007/978-981-15-6067-5_65

Download citation

Publish with us

Policies and ethics