Skip to main content

Modified Cassava: The Last Hope That Could Help to Feed the World—Recent Advances

  • Chapter
  • First Online:
Genetically Modified Crops

Abstract

Plants and herbs are natural gifts of nature to mankind as a repository of nutritional and pharmacologically active constituents that can help the mankind in many ways. Recent advances in biotechnology have enhanced the application of genetic engineering for the improvement of the nutritional status of numerous crops for effective delivery of adequate nutrients, essential vitamins and minerals. Manihot esculenta, commonly known as cassava, has been highlighted as widely consumed staple food in most parts of the globe due to its cost effectiveness and production of several fermented products which form the normal food of mankind especially in developing parts of the world. This chapter provides a comprehensive information on the development and implications of genetically modified (GM) cassava plants as an effective vehicle for delivering numerous biologically active and functionally important constituents for the health and nutritional benefits to mankind. Biofortified transgenics lines have been highlighted. Performance of the GM cassava upon field trials and their effect on various processing activities and the retention of the bioactive components are highlighted. Some in vitro and in vivo biological activities of the GM cassava such as anticancer, antidiabetic, antimicrobial, antiulcer, and anti-hyperlipidemic activities are also focused in detail. Furthermore, consumer perception and acceptability of various products produced from GM cassava are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakayoko S, Tschannen A, Nindjin C, Dao D, Girardin O, Assa A (2009) Impact of water stress on fresh tuber yield and dry matter content of cassava (Manihot esculenta Crantz) in Côte d’Ivoire. Afr J Agric Res 4(1):21–27

    Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  CAS  Google Scholar 

  • Bayoumi SA, Rowan MG, Beeching JR, Blagbrough IS (2010) Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots. Phytochemistry 71(5–6):598–604

    Article  CAS  PubMed  Google Scholar 

  • Bechoff A, Tomlins KI, Chijioke U, Ilona P, Westby A, Boy E (2018) Physical losses could partially explain modest carotenoid retention in dried food products from biofortified cassava. PLoS One 13(3):e0194402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belloti AC (2002) Arthropod pests. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp 209–235

    Chapter  Google Scholar 

  • Beyene G, Solomon FR, Chauhan RD, Gaitan-Solis E, Narayanan N, Gehan J, Siritunga D, Stevens RL, Jifon J, Eck JV, Linsler E, Gehan M, Ilyas M, Fregene M, Sayre RT, Anderson P, Taylor NJ, Cahoon EB (2018) Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Biotechnol J 16:1186–1200

    CAS  Google Scholar 

  • Black RE, Allen LH, Bhutt ZA, Caulfield LE et al (2008) Maternal and child under nutrition: global and regional exposures and health consequences. Lancet 371:243–260

    Article  PubMed  Google Scholar 

  • Bull SE, Ndunguru J, Gruissem W, Beeching JR, Vanderschuren H (2011) Cassava: constraints to production and the transfer of biotechnology to African laboratories. Plant Cell Rep 30(5):779–787

    Article  CAS  PubMed  Google Scholar 

  • Buschmann H, Reilly K, Rodriguez MX et al (2000) Hydrogen peroxide and flavan-3-ols in storage roots of cassava (Manihot esculenta Crantz) during postharvest deterioration. J Agric Food Chem 48(11):5522–5529

    Article  CAS  PubMed  Google Scholar 

  • Calvert LA, Thresh M (2002) The viruses and virus diseases of cassava. In: Hillocks RJ, Thresh JM (eds) Cassava: biology, production and utilization. CABI, Oxon, pp 237–260

    Chapter  Google Scholar 

  • Ceballos H, Iglesias CA, Pérez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516

    Article  CAS  PubMed  Google Scholar 

  • Chavarriaga-Aguirre P, Brand A, Medina A, Prías M, Escobar R, Martinez J, Díaz P, López C, Roca WM, Tohme J (2016) The potential of using biotechnology to improve cassava: a review. In Vitro Cell Dev Biol Plant 52(5):461–478. https://doi.org/10.1007/s11627-016-9776-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56(4):601–611

    Article  CAS  PubMed  Google Scholar 

  • Dogar AM (2006) RNAi dependent epigenetic marks on a geminivirus promoter. Virol J 30:3–5

    Google Scholar 

  • Duan X, Xu J, Ling E, Zhang P (2013) Expression of Cry1Aa in cassava improves its insect resistance against Helicoverpa armigera. Plant Mol Biol 83(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Echeverry M, Mancilla LI, Cortes DF, Chavarriaga P, Tohme J (2002) Preliminary evaluation of the expression of the transgene bar in cassava plants maintained under asexual propagation for 10 years. Annual Report. CIAT, Cali

    Google Scholar 

  • Edoh NL, Adiele J, Ndukwe I, Ogbokiri H, Njoku DN, Egesi CN (2016) Evaluation of high beta carotene cassava genotypes at advanced trial in Nigeria. Open Conf Proc J 7:144–148

    Article  CAS  Google Scholar 

  • El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56(4):481–501

    Article  CAS  PubMed  Google Scholar 

  • Failla ML, Chitchumroonchokchai C, Siritunga D, De Moura FF, Fregene M, Manary MJ, Sayre RT (2012) Retention during processing and bioaccessibility of b-carotene in high b-carotene transgenic cassava root. J Agric Food Chem 60(15):3861–3866

    Article  CAS  PubMed  Google Scholar 

  • Fauquet CM, Stanley J (2003) Geminivirus classification and nomenclature: progress and problems. Ann Appl Biol 145:165–189

    Article  Google Scholar 

  • Gaitán-Solís E, Taylor NJ, Siritunga D, Stevens W, Schachtman DP (2015) Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci 6:492

    Article  PubMed  PubMed Central  Google Scholar 

  • Gegios A, Amthor R, Maziya-Dixon B, Egesi C et al (2010) Children consuming cassava as a staple food are at risk for inadequate zinc, iron, and vitamin A intake. Plant Foods Hum Nutr 65:64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hankoua BB (2003) Regeneration and transformation of African cassava (Manihot esculenta Crantz) germplasm. PhD dissertation, University of Ibadan, Ibadan

    Google Scholar 

  • Hankoua BB, Taylor NJ, Ng SYC, Fawole I, Puonti-Kaerlas J, Padmanabhan C, Yadav JS, Fauquet CM, Dixon AGO, Fondong VN (1996) Production of the first transgenic cassava in Africa via direct shoot organogenesis from friable embryogenic calli and germination of maturing somatic embryos. Afr J Biotechnol 5(19):1700–1712

    Google Scholar 

  • Hefferon KL (2015) Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 16:3895–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods of high-throughput gene silencing in plants. Methods 30:289–295

    Article  CAS  PubMed  Google Scholar 

  • Howeler R, Lutaladio N, Thomas G (2013) Save and grow: Cassava. A guide to sustainable production intensification. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ihemere UE, Narayanan NN, Sayre RT (2012) Iron biofortification and homeostasis in transgenic cassava roots expressing the algal iron assimilatory gene, FEA1. Front Plant Sci 3(3):171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jelili TO (2018) Growth analysis of genetically modified cassava (Manihot esculenta Crantz) plants expressing NPT II marker and GUS reporter genes. Agric Res Technol 14:555921

    Google Scholar 

  • Ladino JJ, Echeverry M, Mancilla LI, Lopez D, Chavarriaga P, Tohme J, Roca W (2002) Genetic transformation of cassava: confirmation of transgenesis in clone 60444 and analysis of CRY1Ab protein in transgenic lines. Preliminary data on transformation of farmer-preferred cultivars SM1219-9 and CM3306-4. Annual report. CIAT, Cali

    Google Scholar 

  • Lee W-S, Fu S-F, Li Z, Murphy AM, Dobson EA, Garland L, Chaluvadi SR, Lewsey MG, Nelson RS, Carr JP (2016) Salicylic acid treatment and expression of an RNA-dependent RNA polymerase 1 transgene inhibit lethal symptoms and meristem invasion during tobacco. Recent biotechnological advances in the improvement of Cassava mosaic virus infection in Nicotiana benthamiana. BMC Plant Biol 16:15. https://doi.org/10.1186/s12870-016-0705-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legg JP, Lava Kumar P, Makeshkumar T, Tripathi L, Ferguson M, Kanju E, Ntawuruhunga P, Cuellar W (2015) Cassava virus diseases: biology, epidemiology, and management. Adv Virus Res 91:85–14

    Article  CAS  PubMed  Google Scholar 

  • Leihner D (2002) Agronomy and cropping systems. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publishing, New York, pp 91–113

    Chapter  Google Scholar 

  • Lenis JI, Calle F, Jaramillo G, Perez JC, Ceballos H, Cock JH (2006) Leaf retention and cassava productivity. Field Crop Res 95(2–3):126–134

    Article  Google Scholar 

  • Li KT, Moulin M, Mangel N, Albersen M, Verhoeven-Duif NM, Ma Q, Zhang P, Fitzpatrick TB, Gruissem W, Vanderschuren H (2015) Increased bioavailable vitamin B6 in field-grown transgenic cassava for dietary sufficiency. Nat Biotechnol 33(10):1029–1032

    PubMed  Google Scholar 

  • Manyong VM, Dixon AGO, Makinde KO, Bokanga M, Whyte J (2000) The contribution of IITA-improved cassava to food security in sub-Saharan Africa: an impact study. IITA report. IITA, Ibadan

    Google Scholar 

  • Monger WA, Seal S, Cotton S, Foster GD (2001) Identification of different isolates of cassava brown streak virus and development of a diagnostic test. Plant Pathol 50:768–775

    Article  CAS  Google Scholar 

  • Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8(3):181–194

    Article  CAS  Google Scholar 

  • Narayanan N, Beyene G, Chauhan RD, Gaitán-Solis E, Grusak MA, Taylor N (2015) Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems. Plant Sci 240:170–181

    Article  CAS  PubMed  Google Scholar 

  • Narayanan N, Beyene G, Chauhan Gaitán-Solís E, Gehan J, Butts P, Siritunga D, Okwuonu I, Woll A, Jiménez-Aguilar DM, Boy E, Grusak MA, Anderson P, Taylor NJ (2019) Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat Biotechnol 37:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar N, Vizzotto CS, Schwartz CA, Pires OR Jr (2007) Cassava diversity in Brazil: the case of carotenoid-rich landraces. Genet Mol Res 6(1):116–121

    CAS  PubMed  Google Scholar 

  • Ntui VO, Kong K, Khan RS, Igawa T, Janavi GJ, Rabindran R, Nakamura I, Mii M (2015) Resistance to Sri Lankan cassava mosaic virus (SLCMV) in genetically engineered cassava cv. KU50 through RNA silencing. PLoS One 10(4):e0120551. https://doi.org/10.1371/journal.pone.0120551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nweke FI, Spencer DDC, Lynam JK (2002) The cassava transformation. Michigan State University Press, East Lansing, pp 101–114

    Google Scholar 

  • Odipio J, Ogwok E, Taylor NJ, Halsey M, Bua A, Fauquet CM, Alicai T (2014) RNAi-derived field resistance to cassava brown streak disease persists across the vegetative cropping cycle. GM Crops Food 5(1):16–19. https://doi.org/10.4161/gmcr.26408

    Article  PubMed  Google Scholar 

  • Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:1780

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogwok E, Odipio J, Halsey M, Gaitán-Solís E, Bua A, Taylor NJ, Fauquet CM, Alicai T (2012) Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease. Mol Plant Pathol 13:1019–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in developing countries. Science 299:900–902

    Article  CAS  PubMed  Google Scholar 

  • Quintero A, Pérez-Quintero AL, López C (2013) Identification of ta-siRNAs and cis-nat-siRNAs in cassava and their roles in response to cassava bacterial blight. Genomics Proteomics Bioinformatics 11(3):172–181. https://doi.org/10.1016/j.gpb.2013.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raemakers CJJM, Sofiari E, Taylor N, Henshaw G, Jacobsen E, Visser RGF (1996) Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker. Mol Breed 2:339–349

    Google Scholar 

  • Raemakers CJJM, Schreuder M, Pereira I, Munyikwa T, Jacobsen E, Visser RGF (2001) Progress made in FEC transformation of cassava. Euphytica 120:15–24

    Article  CAS  Google Scholar 

  • Rodríguez-Celma J, Schmidt W (2013) Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds. Plant Signal Behav 8:e26116

    Article  PubMed  PubMed Central  Google Scholar 

  • Samanta MK, Dey A, Gayen S (2016) CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res 25(5):561–573. https://doi.org/10.1007/s11248-016-9953-5

    Article  CAS  PubMed  Google Scholar 

  • Sanchez T, Salcedo E, Dufour D, Morante N, Debouck D et al (2009) Screening of starch quality traits in cassava (Manihot esculenta Crantz). Starch/Starke 61(1):12–19

    Article  CAS  Google Scholar 

  • Sarria R, Torres E, Balcazar M, Destafano-Beltran L, Roca WM (1995) Progress in Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz). In: Proceedings of the second international scientific meeting cassava biotechnology network, Bogor, Indonesia, 22–26 Aug 1994 (Working document 150). CIAT, Cali, pp 241–244

    Google Scholar 

  • Sarria R, Torres E, Angel F, Chavarriaga P, Roca WM (2000) Transgenic plants of cassava (Manihot esculenta) with resistance to Basta obtained by Agrobacterium-mediated transformation. Plant Cell Rep 19:339–344

    Article  CAS  PubMed  Google Scholar 

  • Serio FD, Schob H, Iglesias A, Tarina C, Bouldoires E, Meins FJ (2001) Sense- and antisense mediated gene silencing in tobacco is inhibited by the same viral suppressors and is associated with accumulation of small RNAs. Proc Natl Acad Sci U S A 98(11):6506–6510

    Article  PubMed  PubMed Central  Google Scholar 

  • Taleon V, Sumbu D, Muzhingi T, Bidiaka SM (2019) Carotenoids retention in biofortified yellow cassava processed with traditional African methods. J Sci Food Agric 99(3):1434–1441

    Article  CAS  PubMed  Google Scholar 

  • Taylor NJ, Masona MV, Carcamo R, Ho T, Schöpke C, Fauquet CM (2001) Production of embryogenic tissues and regeneration of transgenic plants in cassava (Manihot esculenta Crantz). Euphytica 120:25–34

    Google Scholar 

  • Taylor NJ, Masona MV, Ogbe F, Fauquet CM (2003) Cassava: an ancient crop for modern times [compact disc 3]. In: Fauquet CM, Taylor NJ (eds) Proceedings of the 5th international meeting of the Cassava biotechnology network, St. Louis, 4–9 Nov 2001

    Google Scholar 

  • Telengech PK, Maling’a JN, Nyende AB, Gichuki ST, Wanjala BW, Telengech PK (2015) Gene expression of beta carotene genes in transgenic biofortified cassava. Biotechnology 5(4):465–472

    CAS  Google Scholar 

  • Turyagyenda LF, Kizito EB, Ferguson M, Baguma Y, Agaba M, Harvey JJ, Osiru DS (2013) Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. AoB Plants 5:plt007. https://doi.org/10.1093/aobpla/plt007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay SK, Chandrashekar K, Thakur N, Verma PC, Borgio JF, Singh PK, Tuli R (2011) RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J Biosci 36(1):153–161

    Article  CAS  PubMed  Google Scholar 

  • de Valença AW, Bake A, Brouwer ID, Giller KE (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Sec 12:8–14

    Article  Google Scholar 

  • Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70(3):265–272

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren H, Moreno I, Anjanappa RB, Zainuddin IM, Gruissem W (2012) Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava brown streak viruses impacting cassava production in Africa. PLoS One 7(9):e45277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas Bonilla HL, Bolivar LR, Arias V, Bellotti AC (2002) Nataima-31. Variedad de yucca (Manihot esculenta Crantz) resistente a mosca blanca (Aleurotrachelus socialias Bondar) para el valle cálido del Alto Magdalena. Publicación CORPOICA Regional Seis. Código 2-8-3-06-32-2002. A. Postal 064, El Espinal, Tolima

    Google Scholar 

  • Verdaguer B, de Kochko A, Beachy RN, Fauquet C (1996) Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter. Plant Mol Biol 31(6):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Vieira EA, Fialho JF, Faleiro FG, Bellon G, Silva MS (2011) Molecular characterization of biofortified cassava accessions with potential for use in genetic improvement. Rev Cienc Agron 42(2):457–463

    Article  Google Scholar 

  • Wagaba H, Patil BL, Mukasa S, Alicai T, Fauquet CM, Taylor NJ (2016) Artificial microRNA-derived resistance to Cassava brown streak disease. J Virol Methods 231:38–43. https://doi.org/10.1016/j.jviromet.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27(6):581–590

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2008) The global burden of disease: 2004 update. WHO Press, Geneva

    Google Scholar 

  • Xu J, Duan XG, Yang J, Beeching JR, Zhang P (2013a) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays post-harvest physiological deterioration of cassava storage roots. Plant Physiol 161(3):1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013b) Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav 8:e24525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu J, Yang J, Duan X, Jiang Y, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav JS, Ogwok E, Wagaba H, Patil BL, Bagewadi B, Alicai T, Gaitan-Solis E, Taylor NJ, Fauquet CM (2011) RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava. Mol Plant Pathol 12(7):677–687. https://doi.org/10.1111/j.1364-3703.2010.00700.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi B, Hu L, Mei W, Zhou K, Wang H, Luo Y et al (2011) Antioxidant phenolic compounds of cassava (Manihot esculenta) from Hainan. Molecules 16(12):10157–10167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin K, Han T, Liu G, Chen T, Wang Y, Yu AY et al (2015) A Geminivirus-based guide RNAdelivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5:14926. https://doi.org/10.1038/srep14926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Potrykus I, Puonti-Kaerlas J (2000) Efficient production of transgenic cassava using negative and positive selection. Transgenic Res 9:405–415

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J, Gruissem W (2010) Senescence inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol 52(7):653–669. https://doi.org/10.1111/j.1744-7909.2010.00956.x

    Article  CAS  PubMed  Google Scholar 

  • Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R (2012) Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiol 159(4):1396–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Oluwaseun Adetunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adetunji, C.O. et al. (2021). Modified Cassava: The Last Hope That Could Help to Feed the World—Recent Advances. In: Kavi Kishor, P.B., Rajam, M.V., Pullaiah, T. (eds) Genetically Modified Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-5932-7_8

Download citation

Publish with us

Policies and ethics