Skip to main content

Nonlinear Dynamics of Resonant Microelectromechanical System (MEMS): A Review

  • Chapter
  • First Online:
Mechanical Sciences

Abstract

Nonlinearity plays an important role in the dynamics of microelectromechanical resonator. On the one hand, presence of nonlinearity may lead to poor performance of the device. On the other hand, the same nonlinear terms can improve other characteristics of the system. Nonlinearity is, thus, sometimes unwanted while at the other occasions is welcome. Whatever be the reason is, nonlinear dynamics of MEMS device, especially resonator, needs further understanding. In this review work, different aspects of nonlinear dynamics of a single-degree-of-freedom MEMS resonators are discussed. Not only deterministic response under various kinds of excitation, but also noise characteristics of the nonlinear system have been scrutinized. Different methods, which are mostly of recent origin, of tailoring nonlinearity in MEMS resonators have been reviewed. Care has been taken to present a complete picture of the nonlinear dynamics of the simplest type of resonator, namely, the one which can be modelled as a single-degree-of-freedom oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavrik, N.V., Sepaniak, M.J., Datskos, P.G.: Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(7), 2229–2253 (2004)

    Article  Google Scholar 

  2. Zhao, L., Hu, Y., Wang, T., Ding, J., Liu, X., Zhao, Y., Jiang, Z.: A mems resonant sensor to measure fluid density and viscosity under flexural and torsional vibrating modes. Sensors 16(6), 830 (2016)

    Article  Google Scholar 

  3. Todaro, M.T., Guido, F., Mastronardi, V., Desmaele, D., Epifani, G., Algieri, L., De Vittorio, M.: Piezoelectric mems vibrational energy harvesters: advances and outlook. Microelectron. Eng. 183, 23–36 (2017)

    Article  Google Scholar 

  4. Hasan, M.H., Alsaleem, F.M., Ouakad, H.M.: Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators. J. Micromech. Microeng. 28(6), 065007 (2018)

    Article  Google Scholar 

  5. Brand, O., Dufour, I., Heinrich, S., Heinrich, S.M., Josse, F., Fedder, G.K., Korvink, J.G., Hierold, C., Tabata, O.: Resonant MEMS: Fundamentals, Implementation, and Application. Wiley (2015)

    Google Scholar 

  6. Zhang, W.-M., Yan, H., Peng, Z.-K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A: Phys. 214, 187–218 (2014)

    Article  Google Scholar 

  7. Lifshitz, R., Cross, M.: Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Complex. 1, 1–52 (2008)

    MATH  Google Scholar 

  8. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. In: ASME 2008 Dynamic Systems and Control Conference, pp. 1509–1538. American Society of Mechanical Engineers Digital Collection (2009)

    Google Scholar 

  9. Tiwari, S., Candler, R.N.: Using flexural mems to study and exploit nonlinearities: a review. J. Micromech. Microeng. 29(8), 083002 (2019)

    Article  Google Scholar 

  10. Kumar, V., Yang, Y., Boley, J.W., Chiu, G.T.-C., Rhoads, J.F.: Modeling, analysis, and experimental validation of a bifurcation-based microsensor. J. Microelectromech. Syst. 21(3), 549–558 (2012)

    Article  Google Scholar 

  11. Mahboob, I., Yamaguchi, H.: Piezoelectrically pumped parametric amplification and Q enhancement in an electromechanical oscillator. Appl. Phys. Lett. 92(17), 173109 (2008)

    Article  Google Scholar 

  12. Rhoads, J.F., Shaw, S.W.: The impact of nonlinearity on degenerate parametric amplifiers. Appl. Phys. Lett. 96(23), 234101 (2010)

    Article  Google Scholar 

  13. Yabuno, H.: Self-excited oscillation for high-viscosity sensing and self-excited coupled oscillation for ultra-senseitive mass sensing. Procedia IUTAM 22, 216–220 (2017)

    Article  Google Scholar 

  14. Ramos, D., Mertens, J., Calleja, M., Tamayo, J.: Phototermal self-excitation of nanomechanical resonators in liquids. Appl. Phys. Lett. 92(17), 173108 (2008)

    Article  Google Scholar 

  15. Prakash, G., Raman, A., Rhoads, J., Reifenberger, R.G.: Parametric noise squeezing and parametric resonance of microcantilevers in air and liquid environments. Rev. Sci. Instrum. 83(6), 065109 (2012)

    Article  Google Scholar 

  16. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer Science & Business Media (2011)

    Google Scholar 

  17. Zhang, W., Zhang, W., Turner, K.L.: Nonlinear dynamics of micro impact oscillators in high frequency mems switch application. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05, vol. 1, pp. 768–771. IEEE (2005)

    Google Scholar 

  18. Delnavaz, A., Mahmoodi, S.N., Jalili, N., Mahdi Ahadian, M., Zohoor, H.: Nonlinear vibrations of microcantilevers subjected to tip-sample interactions: theory and experiment. J. Appl. Phys. 106(11), 113510 (2009)

    Google Scholar 

  19. Park, Y.-H., Park, K.: High-fidelity modeling of mems resonators. Part I. Anchor loss mechanisms through substrate. J. Microelectromech. Syst. 13(2), 238–247 (2004)

    Article  Google Scholar 

  20. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000)

    Article  Google Scholar 

  21. Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84(1), 64–76 (1998)

    Article  Google Scholar 

  22. Younis, M.I., Alsaleem, F.M., Miles, R., Su, Q.: Characterization of the performance of capacitive switches activated by mechanical shock. J. Micromech. Microeng. 17(7), 1360 (2007)

    Article  Google Scholar 

  23. Hu, S., Raman, A.: Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy. Appl. Phys. Lett. 91(12), 123106 (2007)

    Article  Google Scholar 

  24. Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16(5), 890 (2006)

    Article  Google Scholar 

  25. Sobreviela, G., Vidal-Álvarez, G., Riverola, M., Uranga, A., Torres, F., Barniol, N.: Suppression of the af-mediated noise at the top bifurcation point in a mems resonator with both hardening and softening hysteretic cycles. Sens. Actuators A: Phys. 256, 59–65 (2017)

    Article  Google Scholar 

  26. Trusov, A.A., Shkel, A.M.: Capacitive detection in resonant mems with arbitrary amplitude of motion. J. Micromech. Microeng. 17(8), 1583 (2007)

    Article  Google Scholar 

  27. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)

    Article  Google Scholar 

  28. Kaajakari, V., Mattila, T., Oja, A., Seppa, H.: Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. Syst. 13(5), 715–724 (2004)

    Article  Google Scholar 

  29. Lee, S., Nguyen, C.T.-C.: Phase noise amplitude dependence in self limiting wine-glass disk oscillators. In: Solid State Sensor, Actuator, and Microsystems Workshop (2004)

    Google Scholar 

  30. Yie, Z., Miller, N.J., Shaw, S.W., Turner, K.L.: Parametric amplification in a resonant sensing array. J. Micromech. Microeng. 22(3), 035004 (2012)

    Article  Google Scholar 

  31. Thormann, E., Pettersson, T., Claesson, P.M.: How to measure forces with atomic force microscopy without significant influence from nonlinear optical lever sensitivity. Rev. Sci. Instrum. 80(9), 093701 (2009)

    Article  Google Scholar 

  32. Hu, S., Raman, A.: Chaos in atomic force microscopy. Phys. Rev. Lett. 96(3), 036107 (2006)

    Article  Google Scholar 

  33. Sobreviela, G., Zhao, C., Pandit, M., Do, C., Du, S., Zou, X., Seshia, A.: Parametric noise reduction in a high-order nonlinear mems resonator utilizing its bifurcation points. J. Microelectromech. Syst. 26(6), 1189–1195 (2017)

    Article  Google Scholar 

  34. Zhao, C., Sobreviela, G., Pandit, M., Du, S., Zou, X., Seshia, A.: Experimental observation of noise reduction in weakly coupled nonlinear MEMS resonators. J. Microelectromech. Syst. 26(6), 1196–1203 (2017)

    Article  Google Scholar 

  35. Defoort, M., Taheri-Tehrani, P., Horsley, D.: Exploiting nonlinear amplitude-frequency dependence for temperature compensation in silicon micromechanical resonators. Appl. Phys. Lett. 109(15), 153502 (2016)

    Article  Google Scholar 

  36. Chen, D., Wang, Y., Chen, X., Yang, L., Xie, J.: Temperature-frequency drift suppression via electrostatic stiffness softening in mems resonator with weakened duffing nonlinearity. Appl. Phys. Lett. 114(2), 023502 (2019)

    Article  Google Scholar 

  37. Turner, K.L., Burgner, C.B., Yie, Z., Holtoff, E.: Using nonlinearity to enhance micro/nanosensor performance. In: 2012 IEEE Sensors, pp. 1–4. IEEE (2012)

    Google Scholar 

  38. Burgner, C., Miller, N., Shaw, S., Turner, K.: Parameter sweep strategies for sensing using bifurcations in MEMS. In: Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head Workshop (2010)

    Google Scholar 

  39. Li, L.L., Holthoff, E.L., Shaw, L.A., Burgner, C.B., Turner, K.L.: Noise squeezing controlled parametric bifurcation tracking of mip-coated microbeam mems sensor for tnt explosive gas sensing. J. Microelectromech. Syst. 23(5), 1228–1236 (2014)

    Article  Google Scholar 

  40. Oropeza-Ramos, L.A., Burgner, C.B., Turner, K.L.: Robust micro-rate sensor actuated by parametric resonance. Sens. Actuators A: Phys. 152(1), 80–87 (2009)

    Article  Google Scholar 

  41. Nitzan, S.H., Zega, V., Li, M., Ahn, C.H., Corigliano, A., Kenny, T.W., Horsley, D.A.: Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope. Sci. Rep. 5, 9036 (2015)

    Article  Google Scholar 

  42. Endo, D., Yabuno, H., Yamamoto, Y., Matsumoto, S.: Mass sensing in a liquid environment using nonlinear self-excited coupled-microcantilevers. J. Microelectromech. Syst. 27(5), 774–779 (2018)

    Article  Google Scholar 

  43. Yabuno, H.: Review of applications of self-excited oscillations to highly sensitive vibrational sensors. ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. und Mech. e201900009 (2019)

    Google Scholar 

  44. Hafiz, M., Kosuru, L., Ramini, A., Chappanda, K., Younis, M.: In-plane mems shallow arch beam for mechanical memory. Micromachines 7(10), 191 (2016)

    Article  Google Scholar 

  45. Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of mems arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19(3), 647–656 (2010)

    Article  Google Scholar 

  46. Bajaj, N., Sabater, A.B., Hickey, J.N., Chiu, G.T.-C., Rhoads, J.F.J.: Design and implementation of a tunable, duffing-like electronic resonator via nonlinear feedback. J. Microelectromech. Syst. 25(1), 2–10 (2015)

    Article  Google Scholar 

  47. Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Shaw, S.W., Turner, K.L.: Tailoring the nonlinear response of mems resonators using shape optimization. Appl. Phys. Lett. 110(8), 081902 (2017)

    Google Scholar 

  48. Jensen, B.D., Mutlu, S., Miller, S., Kurabayashi, K., Allen, J.J.: Shaped comb fingers for tailored electromechanical restoring force. J. Microelectromech. Syst. 12(3), 373–383 (2003)

    Article  Google Scholar 

  49. Asadi, K., Li, J., Peshin, S., Yeom, J., Cho, H.: Mechanism of geometric nonlinearity in a nonprismatic and heterogeneous microbeam resonator. Phys. Rev. B 96(11), 115306 (2017)

    Article  Google Scholar 

  50. Chen, D., Wang, Y., Guan, Y., Chen, X., Liu, X., Xie, J.: Methods for nonlinearities reduction in micromechanical beams resonators. J. Microelectromech. Syst. 27(5), 764–773 (2018)

    Article  Google Scholar 

  51. Agarwal, M., Chandorkar, S.A., Candler, R.N., Kim, B., Hopcroft, M.A., Melamud, R., Jha, C.M., Kenny, T.W., Murmann, B.: Optimal drive condition for nonlinearity reduction in electrostatic microresonators. Appl. Phys. Lett. 89(21), 214105 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, G., Jani, N. (2021). Nonlinear Dynamics of Resonant Microelectromechanical System (MEMS): A Review. In: Dixit, U., Dwivedy, S. (eds) Mechanical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-5712-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5712-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5711-8

  • Online ISBN: 978-981-15-5712-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics