Skip to main content

Artificial Intelligence for Internet of Things and Enhanced Medical Systems

  • Chapter
  • First Online:
Bio-inspired Neurocomputing

Abstract

Internet of things (IoT), Big Data, and artificial intelligence (AI) are related research fields that have a relevant impact factor on the design and development of enhanced personalized healthcare systems. This paper discussed the review of AI for IoT and medical systems, which include the usage and practice of AI methodology in different fields of healthcare. The literature review shows that four main areas use AI methodology in medicine, such as heart disease diagnosis, predictive methods, robotic surgery, and personalized treatment. The results confirm that k-nearest neighbors, support vector machine, support vector regression, Naive Bayes, linear regression, regression tree, classification tree, and random forest are the leading AI methods. These methods are mainly used for patient’s data analysis to improve health conditions. Robotic surgery systems such as Transoral Robotic Surgery and Automated Endoscopic System for Optimal Positioning lead to several advantages as these methods provide less aggressive treatments and provide better results in terms of blood loss and faster recovery. Furthermore, Internet of medical things addresses numerous health conditions such a vital biophysical parameters supervision, diabetes, and medical decision-making support methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marques, G., Pitarma, R.: Environmental quality monitoring system based on internet of things for laboratory conditions supervision. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) New Knowledge in Information Systems and Technologies, pp. 34–44. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_4

  2. Mehra, M., Saxena, S., Sankaranarayanan, S., Tom, R.J., Veeramanikandan, M.: IoT based hydroponics system using deep neural networks. Comput. Electron. Agric. 155, 473–486 (2018). https://doi.org/10.1016/j.compag.2018.10.015

    Article  Google Scholar 

  3. Marques, G., Aleixo, D., Pitarma, R.: Enhanced hydroponic agriculture environmental monitoring: an internet of things approach. In: Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science—ICCS 2019, pp. 658–669. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_51

  4. Marques, G., Pitarma, R.: Agricultural environment monitoring system using wireless sensor networks and IoT. In: 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6. IEEE, Caceres (2018). https://doi.org/10.23919/CISTI.2018.8399320

  5. Marques, G., Pitarma, R.: Noise mapping through mobile crowdsourcing for enhanced living environments. In: Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science—ICCS 2019, pp. 670–679. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_52

  6. Skouby, K.E., Lynggaard, P.: Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services. In: 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 874–878. IEEE, Mysore, India (2014). https://doi.org/10.1109/IC3I.2014.7019822

  7. Marques, G., Pitarma, R.: Noise Monitoring for Enhanced Living Environments Based on Internet of Things. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) New Knowledge in Information Systems and Technologies, pp. 45–54. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_5

  8. Dutta, J., Roy, S.: IoT-fog-cloud based architecture for smart city: prototype of a smart building. In: 2017 7th International Conference on Cloud Computing, Data Science & Engineering—Confluence, pp. 237–242. IEEE, Noida, India (2017). https://doi.org/10.1109/CONFLUENCE.2017.7943156

  9. Marques, G., Pitarma, R.: An internet of things-based environmental quality management system to supervise the indoor laboratory conditions. Appl. Sci. 9, 438 (2019). https://doi.org/10.3390/app9030438

    Article  Google Scholar 

  10. Lohani, D., Acharya, D.: SmartVent: a context aware IoT system to measure indoor air quality and ventilation rate. In: 2016 17th IEEE International Conference on Mobile Data Management (MDM), pp. 64–69. IEEE, Porto (2016). https://doi.org/10.1109/MDM.2016.91

  11. Marques, G., Pitarma, R.: Monitoring and control of the indoor environment. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6. IEEE, Lisbon, Portugal (2017). https://doi.org/10.23919/CISTI.2017.7975737

  12. Marques, G., Pitarma, R.: A cost-effective air quality supervision solution for enhanced living environments through the internet of things. Electronics 8, 170 (2019). https://doi.org/10.3390/electronics8020170

    Article  Google Scholar 

  13. Wei, S., Ning, F., Simon, F., Kyungeun, C.: A deep belief network for electricity utilisation feature analysis of air conditioners using a smart IoT platform. J. Inf. Process. Syst. 14, 162–175 (2018). https://doi.org/10.3745/JIPS.04.0056

    Article  Google Scholar 

  14. Marques, G., Pires, I., Miranda, N., Pitarma, R.: Air quality monitoring using assistive robots for ambient assisted living and enhanced living environments through internet of things. Electronics 8, 1375 (2019). https://doi.org/10.3390/electronics8121375

    Article  Google Scholar 

  15. Marques, G., Pitarma, R.: mHealth: indoor environmental quality measuring system for enhanced health and well-being based on internet of things. JSAN 8, 43 (2019). https://doi.org/10.3390/jsan8030043

    Article  Google Scholar 

  16. Buckingham, S.A., Williams, A.J., Morrissey, K., Price, L., Harrison, J.: Mobile health interventions to promote physical activity and reduce sedentary behaviour in the workplace: a systematic review. Digital Health 5, 205520761983988 (2019). https://doi.org/10.1177/2055207619839883

    Article  Google Scholar 

  17. Marques, G.: Ambient Assisted Living and Internet of Things. In: Cardoso, P.J.S., Monteiro, J., Semião, J., Rodrigues, J.M.F. (eds.) Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities, pp. 100–115. IGI Global, Hershey, PA, USA (2019). https://doi.org/10.4018/978-1-5225-7332-6.ch005

  18. Silva, B.M.C., Rodrigues, J.J.P.C., de la Torre Díez, I., López-Coronado, M., Saleem, K.: Mobile-health: A review of current state in 2015. J. Biomed. Inf. 56, 265–272 (2015). https://doi.org/10.1016/j.jbi.2015.06.003

  19. Marques, G., Pitarma, R., M. Garcia, N., Pombo, N.: Internet of things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics. 8, 1081 (2019). https://doi.org/10.3390/electronics8101081

  20. Lake, D., Milito, R.M.R., Morrow, M., Vargheese, R.: Internet of things: architectural framework for ehealth security. J. ICT Stand. 1, 301–328 (2014)

    Google Scholar 

  21. Firouzi, F., Rahmani, A.M., Mankodiya, K., Badaroglu, M., Merrett, G.V., Wong, P., Farahani, B.: Internet-of-Things and big data for smarter healthcare: from device to architecture, applications and analytics. Future Gener. Comput. Syst. 78, 583–586 (2018). https://doi.org/10.1016/j.future.2017.09.016

    Article  Google Scholar 

  22. Marques, G., Garcia, N., Pombo, N.: A survey on IoT: architectures, elements, applications, QoS, platforms and security concepts. In: Mavromoustakis, C.X., Mastorakis, G., Dobre, C. (eds.) Advances in Mobile Cloud Computing and Big Data in the 5G Era, pp. 115–130. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-45145-9_5

  23. Martis, R.J., Gurupur, V.P., Lin, H., Islam, A., Fernandes, S.L.: Recent advances in big data analytics, internet of things and machine learning. Future Gener. Comput. Syst. 88, 696–698 (2018). https://doi.org/10.1016/j.future.2018.07.057

    Article  Google Scholar 

  24. Marques, G., Pitarma, R.: Smartwatch-based application for enhanced healthy lifestyle in indoor environments. In: Omar, S., Haji Suhaili, W.S., Phon-Amnuaisuk, S. (eds.) Computational Intelligence in Information Systems, pp. 168–177. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-03302-6_15

  25. Manogaran, G., Varatharajan, R., Lopez, D., Kumar, P.M., Sundarasekar, R., Thota, C.: A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Gener. Comput. Syst. 82, 375–387 (2018). https://doi.org/10.1016/j.future.2017.10.045

    Article  Google Scholar 

  26. Özdemir, V., Hekim, N.: Birth of industry 5.0: making sense of big data with artificial intelligence, “The Internet of Things” and Next-Generation Technology Policy. OMICS J. Integr. Biol. 22, 65–76 (2018). https://doi.org/10.1089/omi.2017.0194

  27. Allam, Z., Dhunny, Z.A.: On big data, artificial intelligence and smart cities. Cities 89, 80–91 (2019). https://doi.org/10.1016/j.cities.2019.01.032

    Article  Google Scholar 

  28. Marques, G., Roque Ferreira, C., Pitarma, R.: A system based on the internet of things for real-time particle monitoring in buildings. Int. J. Environ. Res. Public Health. 15, 821 (2018). https://doi.org/10.3390/ijerph15040821

  29. Pitarma, R., Marques, G., Ferreira, B.R.: Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 41, (2017). https://doi.org/10.1007/s10916-016-0667-2

  30. Marques, G., Pitarma, R.: An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public Health. 13, 1152 (2016). https://doi.org/10.3390/ijerph13111152

  31. Marques, G.M.S., Pitarma, R.: Smartphone application for enhanced indoor health environments. J. Inf. Syst. Eng. Manag. 1, (2016). https://doi.org/10.20897/lectito.201649

  32. Dimitrov, D.V.: Medical internet of things and big data in healthcare. Health Inform Res. 22, 156 (2016). https://doi.org/10.4258/hir.2016.22.3.156

    Article  Google Scholar 

  33. Marques, G., Pitarma, R.: IAQ Evaluation using an IoT CO2 monitoring system for enhanced living environments. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) Trends and Advances in Information Systems and Technologies, pp. 1169–1177. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-77712-2_112

  34. Marques, G., Ferreira, C.R., Pitarma, R.: Indoor air quality assessment using a CO2 monitoring system based on internet of things. J. Med. Syst. 43, (2019). https://doi.org/10.1007/s10916-019-1184-x

  35. Kaur, P., Kumar, R., Kumar, M.: A healthcare monitoring system using random forest and internet of things (IoT). Multimed Tools Appl. 78, 19905–19916 (2019). https://doi.org/10.1007/s11042-019-7327-8

    Article  Google Scholar 

  36. Manogaran, G., Chilamkurti, N., Hsu, C.-H.: Emerging trends, issues, and challenges in internet of medical things and wireless networks. Pers. Ubiquit. Comput. (2018). https://doi.org/10.1007/s00779-018-1178-6

    Article  MATH  Google Scholar 

  37. Kaur, P., Sharma, N., Singh, A., Gill, B.: CI-DPF: a cloud IoT based framework for diabetes prediction. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 654–660. IEEE, Vancouver, BC (2018). https://doi.org/10.1109/IEMCON.2018.8614775

  38. Dankwa-Mullan, I., Rivo, M., Sepulveda, M., Park, Y., Snowdon, J., Rhee, K.: Transforming diabetes care through artificial intelligence: the future is here. Popul. Health Manag. 22, 229–242 (2019). https://doi.org/10.1089/pop.2018.0129

    Article  Google Scholar 

  39. Dua, S., Acharya, U.R., Dua, P. (eds.): Machine Learning in Healthcare Informatics. Springer, Berlin (2014)

    MATH  Google Scholar 

  40. Brink, H., Richards, J.W., Fetherolf, M.: Real-world Machine Learning. Manning, Shelter Island (2017)

    Google Scholar 

  41. Cielen, D., Meysman, A., Ali, M.: Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools. Manning Publications, Shelter Island, NY (2016)

    Google Scholar 

  42. Kumar, P.M., Devi Gandhi, U.: A novel three-tier internet of things architecture with machine learning algorithm for early detection of heart diseases. Comput. Electr. Eng. 65, 222–235 (2018). https://doi.org/10.1016/j.compeleceng.2017.09.001

    Article  Google Scholar 

  43. Attia, Z.I., Kapa, S., Lopez-Jimenez, F., McKie, P.M., Ladewig, D.J., Satam, G., Pellikka, P.A., Enriquez-Sarano, M., Noseworthy, P.A., Munger, T.M., Asirvatham, S.J., Scott, C.G., Carter, R.E., Friedman, P.A.: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat. Med. 25, 70–74 (2019). https://doi.org/10.1038/s41591-018-0240-2

    Article  Google Scholar 

  44. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., Kitai, T.: Artificial intelligence in precision cardiovascular medicine. J. Am. Coll. Cardiol. 69, 2657–2664 (2017). https://doi.org/10.1016/j.jacc.2017.03.571

    Article  Google Scholar 

  45. Li, B., Wen, T., Hu, C., Zhou, B.: Power System Transient Stability Prediction Algorithm Based on ReliefF and LSTM. In: Sun, X., Pan, Z., Bertino, E. (eds.) Artificial Intelligence and Security, pp. 74–84. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-24274-9_7

  46. Guan, Z., Lv, Z., Du, X., Wu, L., Guizani, M.: Achieving data utility-privacy tradeoff in internet of medical things: a machine learning approach. Future Gener. Comput. Syst. 98, 60–68 (2019). https://doi.org/10.1016/j.future.2019.01.058

    Article  Google Scholar 

  47. Allouzi, M.A., Khan, J.I.: Soter: trust discovery framework for internet of medical things (IoMT). In: 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp. 1–9. IEEE, Washington, DC, USA (2019). https://doi.org/10.1109/WoWMoM.2019.8792971

  48. Yanambaka, V.P., Mohanty, S.P., Kougianos, E., Puthal, D.: PMsec: physical unclonable function-based robust and lightweight authentication in the internet of medical things. IEEE Trans. Consumer Electron. 65, 388–397 (2019). https://doi.org/10.1109/TCE.2019.2926192

    Article  Google Scholar 

  49. Manogaran, G., Varatharajan, R., Priyan, M.K.: Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimed Tools Appl. 77, 4379–4399 (2018). https://doi.org/10.1007/s11042-017-5515-y

    Article  Google Scholar 

  50. Jahankhani, H., Kendzierskyj, S., Jamal, A., Epiphaniou, G., Al-Khateeb, H. eds: Blockchain and Clinical Trial: Securing Patient Data. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-11289-9

  51. Jin, Y., Yu, H., Zhang, Y., Pan, N., Guizani, M.: Predictive analysis in outpatients assisted by the internet of medical things. Future Gener. Comput. Syst. 98, 219–226 (2019). https://doi.org/10.1016/j.future.2019.01.019

    Article  Google Scholar 

  52. Yao, C., Wu, S., Liu, Z., Li, P.: A deep learning model for predicting chemical composition of gallstones with big data in medical internet of things. Future Gener. Comput. Syst. 94, 140–147 (2019). https://doi.org/10.1016/j.future.2018.11.011

    Article  Google Scholar 

  53. Fki, Z., Ammar, B., Ayed, M.B.: Machine learning with internet of things data for risk prediction: application in ESRD. In: 2018 12th International Conference on Research Challenges in Information Science (RCIS), pp. 1–6. IEEE, Nantes (2018). https://doi.org/10.1109/RCIS.2018.8406669

  54. Abdelaziz, A., Salama, A.S., Riad, A.M., Mahmoud, A.N.: A machine learning model for predicting of chronic kidney disease based internet of things and cloud computing in smart cities. In: Hassanien, A.E., Elhoseny, M., Ahmed, S.H., Singh, A.K. (eds.) Security in Smart Cities: Models, Applications, and Challenges, pp. 93–114. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-01560-2_5

  55. Kumar, P.M., Lokesh, S., Varatharajan, R., Chandra Babu, G., Parthasarathy, P.: Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Gener. Comput. Syst. 86, 527–534 (2018). https://doi.org/10.1016/j.future.2018.04.036

    Article  Google Scholar 

  56. Sangaiah, A.K.: Hybrid reasoning-based privacy-aware disease prediction support system. Comput. Electr. Eng. 73, 114–127 (2019). https://doi.org/10.1016/j.compeleceng.2018.11.009

  57. Rghioui, Lloret: Parra, Sendra, Oumnad: glucose data classification for diabetic patient monitoring. Appl. Sci. 9, 4459 (2019). https://doi.org/10.3390/app9204459

    Article  Google Scholar 

  58. Troisi, R.I., Pegoraro, F., Giglio, M.C., Rompianesi, G., Berardi, G., Tomassini, F., De Simone, G., Aprea, G., Montalti, R., De Palma, G.D.: Robotic approach to the liver: open surgery in a closed abdomen or laparoscopic surgery with technical constraints? Surg. Oncol. S0960740419301999 (2019). https://doi.org/10.1016/j.suronc.2019.10.012

  59. Gaike, V., Mhaske, R., Sonawane, S., Akhter, N., Deshmukh, P.D.: Clustering of breast cancer tumor using third order GLCM feature. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 318–322. IEEE, Greater Noida, Delhi, India (2015). https://doi.org/10.1109/ICGCIoT.2015.7380481

  60. Masood, A., Sheng, B., Li, P., Hou, X., Wei, X., Qin, J., Feng, D.: Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. J. Biomed. Inform. 79, 117–128 (2018). https://doi.org/10.1016/j.jbi.2018.01.005

    Article  Google Scholar 

  61. Elhoseny, M., Shankar, K., Lakshmanaprabu, S.K., Maseleno, A., Arunkumar, N.: Hybrid optimization with cryptography encryption for medical image security in internet of things. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3801-x

    Article  Google Scholar 

  62. Mattheis, S., Hussain, T., Höing, B., Haßkamp, P., Holtmann, L., Lang, S.: Robotics in laryngeal surgery. Operative Tech. Otolaryngol.-Head Neck Surgery 30, 284–288 (2019). https://doi.org/10.1016/j.otot.2019.09.012

    Article  Google Scholar 

  63. Harky, A., Chaplin, G., Chan, J.S.K., Eriksen, P., MacCarthy-Ofosu, B., Theologou, T., Muir, A.D.: The future of open heart surgery in the era of robotic and minimal surgical interventions. Heart Lung Circ. S1443950619305542 (2019). https://doi.org/10.1016/j.hlc.2019.05.170

  64. Park, D.A., Lee, M.J., Kim, S.-H., Lee, S.H.: Comparative safety and effectiveness of transoral robotic surgery versus open surgery for oropharyngeal cancer: a systematic review and meta-analysis. Euro. J. Surg. Oncol. S0748798319308728 (2019). https://doi.org/10.1016/j.ejso.2019.09.185

  65. Zappa, F., Mattavelli, D., Madoglio, A., Rampinelli, V., Ferrari, M., Tampalini, F., Fontanella, M., Nicolai, P., Doglietto, F., Agosti, E., Battaglia, P., Biroli, A., Bresson, D., Castelnuovo, P., Fiorindi, A., Herman, P., Karligkiotis, A., Locatelli, D., Pozzi, F., Saraceno, G., Schreiber, A., Verillaud, B., Turri Zanoni, M.: Hybrid robotics for endoscopic skull base surgery: preclinical evaluation and surgeon first impression. World Neurosurgery. S1878875019327706 (2019). https://doi.org/10.1016/j.wneu.2019.10.142

  66. Vitiello, V., Lee, S. L., Cundy, T.P., Yang, G.Z.: Emerging robotic platforms for minimally invasive surgery. IEEE Rev. Biomed. Eng. 6, 111–126 (2013). https://doi.org/10.1109/RBME.2012.2236311

  67. Guo, J., Liu, C., Poignet, P: Enhanced position-force tracking of time-delayed teleoperation for robotic-assisted surgery. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4894–4897. IEEE, Milan (2015). https://doi.org/10.1109/EMBC.2015.7319489

  68. Casula, R.: Robotic technology to facilitate minimal invasive cardiac surgery. In: IET Seminar on Robotic Surgery: The Kindest Cut of All? pp. 15–16. IEE, London, UK (2006). https://doi.org/10.1049/ic:20060524

  69. Prabu, A.J.: Artificial intelligence robotically assisted brain surgery. IOSRJEN 4, 09–14 (2014). https://doi.org/10.9790/3021-04540914

    Article  Google Scholar 

  70. Panesar, S., Cagle, Y., Chander, D., Morey, J., Fernandez-Miranda, J., Kliot, M.: Artificial intelligence and the future of surgical robotics. Ann Surg. 270, 223–226 (2019). https://doi.org/10.1097/SLA.0000000000003262

    Article  Google Scholar 

  71. De Momi, E., Ferrigno, G.: Robotic and artificial intelligence for keyhole neurosurgery: The ROBOCAST project, a multi-modal autonomous path planner. Proc. Inst. Mech. Eng. H. 224, 715–727 (2010). https://doi.org/10.1243/09544119JEIM585

    Article  Google Scholar 

  72. Lanfranco, A.R., Castellanos, A.E., Desai, J.P., Meyers, W.C.: Robotic surgery: a current perspective. Ann. Surg. 239, 14–21 (2004). https://doi.org/10.1097/01.sla.0000103020.19595.7d

    Article  Google Scholar 

  73. Fröhlich, H., Balling, R., Beerenwinkel, N., Kohlbacher, O., Kumar, S., Lengauer, T., Maathuis, M.H., Moreau, Y., Murphy, S.A., Przytycka, T.M., Rebhan, M., Röst, H., Schuppert, A., Schwab, M., Spang, R., Stekhoven, D., Sun, J., Weber, A., Ziemek, D., Zupan, B.: From hype to reality: data science enabling personalized medicine. BMC Med. 16, 150 (2018). https://doi.org/10.1186/s12916-018-1122-7

    Article  Google Scholar 

  74. Schork, N.J.: Artificial Intelligence and Personalized Medicine. In: Von Hoff, D.D. Han, H. (eds.) Precision Medicine in Cancer Therapy, pp. 265–283. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-16391-4_11

  75. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18, 24 (2018). https://doi.org/10.1186/s12874-018-0482-1

    Article  Google Scholar 

  76. Nayyar, A., Puri, V., Nguyen, N.G.: BioSenHealth 1.0: A novel internet of medical things (IoMT)-based patient health monitoring system. In: Bhattacharyya, S., Hassanien, A.E., Gupta, D., Khanna, A., Pan, I. (eds.) International Conference on Innovative Computing and Communications, pp. 155–164. Springer Singapore, Singapore (2019). https://doi.org/10.1007/978-981-13-2324-9_16

  77. Khan, U., Ali, A., Khan, S., Aadil, F., Durrani, M.Y., Muhammad, K., Baik, R., Lee, J.W.: Internet of Medical Things–based decision system for automated classification of Alzheimer’s using three-dimensional views of magnetic resonance imaging scans. Int. J. Distrib. Sens. Netw. 15, 155014771983118 (2019). https://doi.org/10.1177/1550147719831186

    Article  Google Scholar 

  78. Chen, M., Yang, J., Zhou, J., Hao, Y., Zhang, J., Youn, C.-H.: 5G-smart diabetes: toward personalized diabetes diagnosis with healthcare big data clouds. IEEE Commun. Mag. 56, 16–23 (2018). https://doi.org/10.1109/MCOM.2018.1700788

    Article  Google Scholar 

  79. Heidari, A.A., Faris, H., Aljarah, I., Mirjalili, S.: An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft. Comput. 23, 7941–7958 (2019). https://doi.org/10.1007/s00500-018-3424-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oniani, S., Marques, G., Barnovi, S., Pires, I.M., Bhoi, A.K. (2021). Artificial Intelligence for Internet of Things and Enhanced Medical Systems. In: Bhoi, A., Mallick, P., Liu, CM., Balas, V. (eds) Bio-inspired Neurocomputing. Studies in Computational Intelligence, vol 903. Springer, Singapore. https://doi.org/10.1007/978-981-15-5495-7_3

Download citation

Publish with us

Policies and ethics