Skip to main content

Graphene Oxide (GO) Nanocomposite Based Room Temperature Gas Sensor

  • Chapter
  • First Online:
Functional Nanomaterials

Abstract

A quest for the room temperature operated gas sensing lead to development of graphene oxide-based nanocomposite as the potential sensor materials. Room temperature operation is one of the major challenges which is being addressed over the years as it allows less power consumption as well as simplifies device configuration. Trivial chemical synthesis route and mass production are the key features that make GO an ideal sensing material. The presence of oxygen functional group and surface defects on GO act as receptor functions for adsorption and chemical reaction of target gas sensing molecules. The present chapter comprises the various GO nanocomposites materials developed for room temperature gas sensor application. The structural, chemical, and electrical properties of GO are also discussed. Various synthesis routes for GO have been summarized starting with the advantages of GO nanocomposites materials and the principle of operation for gas sensing. The synergetic effect due to the addition of multi-sensing element plays a vital role in enhancing sensing performance. Incorporation of noble metal nanoparticles to GO has a significant effect on gas response enhancement. Finally, the challenges and probable development of GO-based nanocomposites are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Schedin F et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652

    Article  CAS  Google Scholar 

  3. Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  4. Huang X et al (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686

    Article  CAS  Google Scholar 

  5. Wu Z-S et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187–3194

    Article  CAS  Google Scholar 

  6. Pyun J (2011) Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew Chem Int Ed 50(1):46–48

    Article  CAS  Google Scholar 

  7. Min SK et al (2011) Fast DNA sequencing with a graphene-based nanochannel device. Nat Nanotechnol 6(3):162

    Article  CAS  Google Scholar 

  8. Hu W et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323

    Article  CAS  Google Scholar 

  9. Novoselov KS, Geim A (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  10. Dimiev A et al (2011) Layer-by-layer removal of graphene for device patterning. Science 331(6021):1168–1172

    Article  CAS  Google Scholar 

  11. Prezioso S et al (2012) Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction. Langmuir 28(12):5489–5495

    Article  CAS  Google Scholar 

  12. Lee S-K et al (2012) All graphene-based thin film transistors on flexible plastic substrates. Nano Lett 12(7):3472–3476

    Article  CAS  Google Scholar 

  13. Yan C, Cho JH, Ahn J-H (2012) Graphene-based flexible and stretchable thin film transistors. Nanoscale 4(16):4870–4882

    Article  CAS  Google Scholar 

  14. Liu Y, Chang J, Lin L (2014) A flexible graphene FET gas sensor using polymer as gate dielectrics. In: 2014 IEEE 27th international conference on micro electro mechanical systems (MEMS). IEEE

    Google Scholar 

  15. Robinson JT et al (2008) Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett 8(10):3441–3445

    Article  CAS  Google Scholar 

  16. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7):2045–2049

    Article  CAS  Google Scholar 

  17. Suk JW et al (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564

    Article  CAS  Google Scholar 

  18. Yan X et al (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10(5):1869–1873

    Article  CAS  Google Scholar 

  19. Loh KP et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015

    Article  CAS  Google Scholar 

  20. Essig S et al (2010) Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. Nano Lett 10(5):1589–1594

    Article  CAS  Google Scholar 

  21. Luo Z et al (2009) Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett 94(11):111909

    Article  CAS  Google Scholar 

  22. Eda G et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509

    Article  CAS  Google Scholar 

  23. Subrahmanyam K et al (2010) Blue light emitting graphene-based materials and their use in generating white light. Solid State Commun 150(37–38):1774–1777

    Article  CAS  Google Scholar 

  24. Zhou Y et al (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21(13):2950–2956

    Article  CAS  Google Scholar 

  25. Zhu J et al (2011) Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49(6):1900–1905

    Article  CAS  Google Scholar 

  26. Zhang X-L et al (2011) Nonlinear optical and optical limiting properties of graphene oxide–Fe3O4 hybrid material. J. Optics 13(7):075202

    Article  CAS  Google Scholar 

  27. Brodie BC (1859) XIII. On the atomic weight of graphite. Philos Trans R Soc Lond (149):249–259

    Google Scholar 

  28. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217

    Article  CAS  Google Scholar 

  29. Gottschalk F (1865) Beiträge zur Kenntniss der Graphitsäure. J für Praktische Chemie 95(1):321–350

    Article  Google Scholar 

  30. Thiele H (1930) Graphit und Graphitsäure. Zeitschrift für anorganische und allgemeine Chemie 190(1):145–160

    Article  CAS  Google Scholar 

  31. Thiele H (1937) Über Salzbildung und Basenaustausch der Graphitsäure. Colloid Polym Sci 80(1):1–20

    CAS  Google Scholar 

  32. Eigler S et al (2013) Graphene oxide: a stable carbon framework for functionalization. J Mater Chem A 1(38):11559–11562

    Article  CAS  Google Scholar 

  33. Yan J-A, Chou M (2010) Oxidation functional groups on graphene: Structural and electronic properties. Phys Rev B 82(12):125403

    Article  CAS  Google Scholar 

  34. Yan J-A, Xian L, Chou M (2009) Structural and electronic properties of oxidized graphene. Phys Rev Lett 103(8):086802

    Article  CAS  Google Scholar 

  35. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270

    Article  CAS  Google Scholar 

  36. Huang X et al (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902

    Article  CAS  Google Scholar 

  37. Chen Z et al (2007) Graphene nano-ribbon electronics. Phys E: Low-dimensional Syst Nanostruct 40(2):228–232

    Article  CAS  Google Scholar 

  38. Liao L et al (2010) High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv Mater 22(17):1941–1945

    Article  CAS  Google Scholar 

  39. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22(22):2392–2415

    Article  CAS  Google Scholar 

  40. Ko G et al (2011) Improved sorption characteristics of NH3 molecules on the solution-processed graphene sheets. J Cryst Growth 326(1):208–211

    Article  CAS  Google Scholar 

  41. Gilje S et al (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398

    Article  CAS  Google Scholar 

  42. Moser J et al (2008) The environment of graphene probed by electrostatic force microscopy. Appl Phys Lett 92(12):123507

    Article  CAS  Google Scholar 

  43. Chatterjee SG et al (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B: Chem 221:1170–1181

    Article  CAS  Google Scholar 

  44. Becerril HA et al (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470

    Article  CAS  Google Scholar 

  45. Li X et al (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538

    Article  CAS  Google Scholar 

  46. Mattevi C et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19(16):2577–2583

    Article  CAS  Google Scholar 

  47. Acik M, Chabal YJ (2013) A review on thermal exfoliation of graphene oxide. J Mater Sci Res 2(1):101

    CAS  Google Scholar 

  48. Guo L et al (2012) Bandgap tailoring and synchronous microdevices patterning of graphene oxides. J Phys Chem C 116(5):3594–3599

    Article  CAS  Google Scholar 

  49. Liu L et al (2012) Mechanical properties of graphene oxides. Nanoscale 4(19):5910–5916

    Article  CAS  Google Scholar 

  50. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Google Scholar 

  51. Toda K, Furue R, Hayami S (2015) Recent progress in applications of graphene oxide for gas sensing: a review. Anal Chim Acta 878:43–53

    Article  CAS  Google Scholar 

  52. Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31(2):1481–1487

    Article  CAS  Google Scholar 

  53. Hofmann U, König E (1937) Untersuchungen über graphitoxyd. Zeitschrift für anorganische und allgemeine Chemie 234(4):311–336

    Article  CAS  Google Scholar 

  54. Hofmann U, Holst R (1939) The acidic nature and the methylation of graphitoxide. Ber Dtsch Chem Ges 72:754–771

    Article  Google Scholar 

  55. El-Shafai NM et al (2018) Graphene oxide–metal oxide nanocomposites: fabrication, characterization and removal of cationic rhodamine B dye. RSC Adv 8(24):13323–13332

    Article  CAS  Google Scholar 

  56. Khan M et al (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3(37):18753–18808

    Article  CAS  Google Scholar 

  57. Nossol E et al (2014) Synthesis, characterization and morphology of reduced graphene oxide–metal–TCNQ nanocomposites. J Mater Chem C 2(5):870–878

    Article  CAS  Google Scholar 

  58. Kuila T et al (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105

    Article  CAS  Google Scholar 

  59. Economopoulos, SP, Tagmatarchis N (2013) Chemical functionalization of exfoliated graphene. Chem-A Eur J 19(39):12930–12936

    Google Scholar 

  60. Sreeprasad T, Berry V (2013) How do the electrical properties of graphene change with its functionalization? Small 9(3):341–350

    Article  CAS  Google Scholar 

  61. El Rhazi M et al (2018) Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int Nano Lett 8(2):79–99

    Article  CAS  Google Scholar 

  62. Zhang L et al (2018) Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater 61(3):303–352

    Article  CAS  Google Scholar 

  63. Smith AT et al (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1(1):31–47

    Article  Google Scholar 

  64. Massera E et al (2011) Gas sensors based on graphene. Chimica Oggi/Chem Today 29(1)

    Google Scholar 

  65. Arsat R et al (2009) Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467(4–6):344–347

    Article  CAS  Google Scholar 

  66. Wehling T et al (2008) Molecular doping of graphene. Nano Lett 8(1):173–177

    Article  CAS  Google Scholar 

  67. Wehling T, Katsnelson M, Lichtenstein A (2009) Adsorbates on graphene: impurity states and electron scattering. Chem Phys Lett 476(4–6):125–134

    Article  CAS  Google Scholar 

  68. Crowther AC et al (2012) Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 6(2):1865–1875

    Article  CAS  Google Scholar 

  69. Hill EW, Vijayaragahvan A, Novoselov K (2011) Graphene sensors. IEEE Sens J 11(12):3161–3170

    Article  CAS  Google Scholar 

  70. Wang C et al (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3):2088–2106

    Article  CAS  Google Scholar 

  71. Barsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys: Condens Matter 15(20):R813

    Google Scholar 

  72. Lee CY, Strano MS (2005) Understanding the dynamics of signal transduction for adsorption of gases and vapors on carbon nanotube sensors. Langmuir 21(11):5192–5196

    Article  CAS  Google Scholar 

  73. Lu G, Ocola LE, Chen J (2009) Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44):445502

    Article  CAS  Google Scholar 

  74. Zhou Y et al (2014) A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sens Actuators B: Chem 203:135–142

    Article  CAS  Google Scholar 

  75. Fisher J, Giaever I (1961) Tunneling through thin insulating layers. J Appl Phys 32(2):172–177

    Article  Google Scholar 

  76. Chen Y, Zhang W, Wu Q (2017) A highly sensitive room-temperature sensing material for NH3: SnO2-nanorods coupled by rGO. Sens Actuators B: Chem 242:1216–1226

    Article  CAS  Google Scholar 

  77. Tai H et al (2016) ZnO nanoparticles/reduced graphene oxide bilayer thin films for improved NH3-sensing performances at room temperature. Nanoscale Res Lett 11(1):130

    Article  CAS  Google Scholar 

  78. Zhang D et al (2017) Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens Actuators B: Chem 247:875–882

    Article  CAS  Google Scholar 

  79. Tammanoon N et al (2015) Ultrasensitive NO2 sensor based on ohmic metal–semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl Mater Interfaces 7(43):24338–24352

    Article  CAS  Google Scholar 

  80. Liu Z et al (2017) Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets. Appl Surf Sci 423:721–727

    Article  CAS  Google Scholar 

  81. Jiang X et al (2017) Novel pn heterojunction-type rGO/CeO2 bilayer membrane for room-temperature nitrogen dioxide detection. Mater Lett 186:49–52

    Article  CAS  Google Scholar 

  82. Zhang B et al (2018) The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens Actuators B: Chem 261:252–263

    Article  CAS  Google Scholar 

  83. Luo Y et al (2017) Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int J Hydrog Energy 42(31):20386–20397

    Article  CAS  Google Scholar 

  84. Liu X, Sun J, Zhang X (2015) Novel 3D graphene aerogel–ZnO composites as efficient detection for NO2 at room temperature. Sens Actuators B: Chem 211:220–226

    Article  CAS  Google Scholar 

  85. Liu X et al (2014) 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv 4(43):22601–22605

    Article  CAS  Google Scholar 

  86. Li X et al (2016) Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens Actuators B: Chem 230:330–336

    Article  CAS  Google Scholar 

  87. Ye Z et al (2016) A facile method to develop novel TiO2/rGO layered film sensor for detecting ammonia at room temperature. Mater Lett 165:127–130

    Article  CAS  Google Scholar 

  88. Fan G et al (2011) Synthesis of flowerlike nano-SnO2 and a study of its gas sensing response. Meas Sci Technol 22(4):045203

    Article  CAS  Google Scholar 

  89. Gurlo A (2011) Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3(1):154–165

    Google Scholar 

  90. Lin Q, Li Y, Yang M (2012) Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature. Sens Actuators B: Chem 173:139–147

    Article  CAS  Google Scholar 

  91. Yang W et al (2014) Additive-free synthesis of In2O3 cubes embedded into graphene sheets and their enhanced NO2 sensing performance at room temperature. ACS Appl Mater Interfaces 6(23):21093–21100

    Article  CAS  Google Scholar 

  92. Meng H et al (2015) Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature. J Mater Chem A 3(3):1174–1181

    Article  CAS  Google Scholar 

  93. Sun D et al (2018) Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J Nanotechnol 9(1):2832–2844

    Article  CAS  Google Scholar 

  94. Zhang B et al (2018) Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sens Actuators B: Chem 263:387–399

    Article  CAS  Google Scholar 

  95. Kumar R, Kushwaha N, Mittal J (2017) Superior, rapid and reversible sensing activity of graphene-SnO hybrid film for low concentration of ammonia at room temperature. Sens Actuators B: Chem 244:243–251

    Article  CAS  Google Scholar 

  96. Zhang J et al (2015) Room temperature NO2 sensing: what advantage does the rGO–NiO nanocomposite have over pristine NiO? Phys Chem Chem Phys 17(22):14903–14911

    Article  CAS  Google Scholar 

  97. Navale Y et al (2019) Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceram Int 45(2):1513–1522

    Article  CAS  Google Scholar 

  98. Ma H et al (2019) Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. J Alloys Compd 782:1121–1126

    Article  CAS  Google Scholar 

  99. Pham T et al (2019) MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3):3196–3205

    Article  CAS  Google Scholar 

  100. Su Z et al (2018) Cu-modified carbon spheres/reduced graphene oxide as a high sensitivity of gas sensor for NO2 detection at room temperature. Chem Phys Lett 695:153–157

    Article  CAS  Google Scholar 

  101. Li Z et al (2018) Room-temperature synthesis of CuO/reduced graphene oxide nanohybrids for high-performance NO2 gas sensor. Sens Actuators B: Chem 271:306–310

    Article  CAS  Google Scholar 

  102. Wang Z et al (2018) Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing. J Colloid Interface Sci 514:599–608

    Article  CAS  Google Scholar 

  103. Wang Z et al (2018) Oxygen vacancy engineering for enhanced sensing performances: a case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens Actuators B: Chem 266:812–822

    Article  CAS  Google Scholar 

  104. Wang T et al (2018) Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res 11(2):791–803

    Article  CAS  Google Scholar 

  105. Zhang H et al (2017) Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sens Actuators B: Chem 241:109–115

    Article  CAS  Google Scholar 

  106. Liu J et al (2017) Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection. J Colloid Interface Sci 504:206–213

    Article  CAS  Google Scholar 

  107. Zhang J et al (2017) Enhancing room-temperature NO2 sensing properties via forming heterojunction for NiO-rGO composited with SnO2 nanoplates. Sens Actuators B: Chem 243:1010–1019

    Article  CAS  Google Scholar 

  108. Wang Z et al (2017) High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens Actuators B: Chem 242:269–279

    Article  CAS  Google Scholar 

  109. Wang Z et al (2016) Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sens Actuators B: Chem 222:893–903

    Article  CAS  Google Scholar 

  110. Yang Y et al (2016) Fe3O4/rGO nanocomposite: synthesis and enhanced NOx gas-sensing properties at room temperature. RSC Adv 6(43):37085–37092

    Article  CAS  Google Scholar 

  111. Yang Y et al (2016) A novel gas sensor based on porous α-Ni(OH)2 ultrathin nanosheet/reduced graphene oxide composites for room temperature detection of NOx. New J Chem 40(5):4678–4686

    Article  CAS  Google Scholar 

  112. Xia Y et al (2016) Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors. ACS Appl Mater Interfaces 8(51):35454–35463

    Article  CAS  Google Scholar 

  113. Liu S et al (2015) High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sens Actuators B: Chem 211:318–324

    Article  CAS  Google Scholar 

  114. Wan P et al (2015) Reduced graphene oxide modified with hierarchical flower-like In(OH)3 for NO2 room-temperature sensing. Sens Actuators B: Chem 214:36–42

    Article  CAS  Google Scholar 

  115. Gu F et al (2015) In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens Actuators B: Chem 219:94–99

    Article  CAS  Google Scholar 

  116. Su P-G, Peng S-L (2015) Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132:398–405

    Article  CAS  Google Scholar 

  117. Lee C-T, Wang Y-S (2019) High-performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane. J Alloys Compd 789:693–696

    Article  CAS  Google Scholar 

  118. Khurshid F et al (2018) Aryl fluoride functionalized graphene oxides for excellent room temperature ammonia sensitivity/selectivity. RSC Adv 8(36):20440–20449

    Article  CAS  Google Scholar 

  119. Achary LSK et al (2018) Reduced graphene oxide-CuFe2O4 nanocomposite: a highly sensitive room temperature NH3 gas sensor. Sens Actuators B: Chem 272:100–109

    Article  CAS  Google Scholar 

  120. Li S et al (2018) Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate. Sens Actuators B: Chem 273:726–734

    Article  CAS  Google Scholar 

  121. Su P-G, Chen F-Y, Wei C-H (2018) Simple one-pot polyol synthesis of Pd nanoparticles, TiO2 microrods and reduced graphene oxide ternary composite for sensing NH3 gas at room temperature. Sens Actuators B: Chem 254:1125–1132

    Article  CAS  Google Scholar 

  122. Karaduman I et al (2017) Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. J Alloys Compd 722:569–578

    Article  CAS  Google Scholar 

  123. Andre RS et al (2017) Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sens. Actuators B: Chem. 238:795–801

    Article  CAS  Google Scholar 

  124. Gaikwad G et al (2017) Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites. Mater Sci Eng: B 218:14–22

    Article  CAS  Google Scholar 

  125. Sun J et al (2017) Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens Actuators B: Chem 241:658–664

    Article  CAS  Google Scholar 

  126. Kulkarni S et al (2018) Synthesis and evaluation of gas sensing properties of PANI, PANI/SnO2 and PANI/SnO2/rGO nanocomposites at room temperature. Inorg Chem Commun 96:90–96

    Article  CAS  Google Scholar 

  127. Tian J et al (2016) A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature. Microchim Acta 183(11):2871–2878

    Article  CAS  Google Scholar 

  128. Feng Q et al (2016) Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens Actuators B: Chem 222:864–870

    Article  CAS  Google Scholar 

  129. Su P-G, Yang L-Y (2016) NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sens Actuators B: Chem 223:202–208

    Article  CAS  Google Scholar 

  130. Huang H et al (2015) Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol 5(5):2649–2669

    Article  CAS  Google Scholar 

  131. Ma Z et al (2019) Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature. Appl Surf Sci 465:625–634

    Article  CAS  Google Scholar 

  132. Navazani S et al (2018) Fabrication and characterization of a sensitive, room temperature methane sensor based on SnO2@reduced graphene oxide-polyaniline ternary nanohybrid. Mater Sci Semicond Process 88:139–147

    Article  CAS  Google Scholar 

  133. Zhou Y et al (2017) Study on gas sensing of reduced graphene oxide/ZnO thin film at room temperature. Sens Actuators B: Chem 240:870–880

    Article  CAS  Google Scholar 

  134. Guo D et al (2016) Reduced-graphene-oxide/metal-oxide p-n heterojunction aerogels as efficient 3D sensing frameworks for phenol detection. Carbon 99:571–578

    Article  CAS  Google Scholar 

  135. Ye Z et al (2016) Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens Actuators B: Chem 223:149–156

    Article  CAS  Google Scholar 

  136. Acharyya D, Bhattacharyya P (2016) Highly efficient room-temperature gas sensor based on TiO2 nanotube-reduced graphene-oxide hybrid device. IEEE Electron Device Lett 37(5):656–659

    Article  CAS  Google Scholar 

  137. Zhang D et al (2015) Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv 5(4):3016–3022

    Article  CAS  Google Scholar 

  138. Zhang D et al (2015) Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv 5(24):18666–18672

    Article  CAS  Google Scholar 

  139. Li X et al (2015) Reduced graphene oxide/hierarchical flower-like zinc oxide hybrid films for room temperature formaldehyde detection. Sens Actuators B: Chem 221:1290–1298

    Article  CAS  Google Scholar 

  140. Sansone L et al (2014) Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics. Sens Actuators B: Chem 202:523–526

    Article  CAS  Google Scholar 

  141. Choi S-J et al (2014) Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 6(4):2588–2597

    Article  CAS  Google Scholar 

  142. Prezioso S et al (2013) Graphene oxide as a practical solution to high sensitivity gas sensing. J Phys Chem C 117(20):10683–10690

    Article  CAS  Google Scholar 

  143. Pustelny T et al (2013) The sensitivity of sensor structures with oxide graphene exposed to selected gaseous atmospheres. Bull Pol Acad Sci: Tech Sci 61(3):705–710

    CAS  Google Scholar 

  144. Ma C, Shao X, Cao D (2014) Nitrogen-doped graphene as an excellent candidate for selective gas sensing. Sci China Chem 57(6):911–917

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Leading Research Laboratory program via National Research Foundation (NRF) (NRF-2016R1A2B2016665) Republic of Korea and funded by the Ministry of Science, ICT and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh T. Nakate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakate, U.T., Choudhury, S.P., Ahmad, R., Patil, P., Nakate, Y.T., Hahn, YB. (2020). Graphene Oxide (GO) Nanocomposite Based Room Temperature Gas Sensor. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_12

Download citation

Publish with us

Policies and ethics