Skip to main content

A Short Note on the Processing of Materials Through Microwave Route

  • Conference paper
  • First Online:
Advances in Materials Processing

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

There are various fabrication techniques used for depositing the material over the surface of substrate to enhance the surface properties. The need of surface modification leads to the use of many techniques which are not only economical but also eco-friendly in terms of producing pollution. The microwave route has emerged as one of the tool used for the application of surface engineering, where the materials like ceramics, metals and alloys and various composites can easily be deposited. The microwave route utilizes the heat of the waves, which further melts the material to be deposited on the substrate. In this article, the application of microwave energy in the form of various techniques has been studied for the fabrication of materials by joining, melting and cladding

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prakash, C., Singh, S., Verma, K., Sidhu, S.S., Singh, S.: Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications. Vacuum 155, 578–584 (2018)

    Article  Google Scholar 

  2. Prakash, C., Singh, S., Pabla, B.S., Sidhu, S.S., Uddin, M.S.: Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering. Mater. Manuf. Processes 34(4), 357–368 (2019)

    Article  Google Scholar 

  3. Prakash, C., Singh, S., Gupta, M.K., Mia, M., Królczyk, G., Khanna, N.: Synthesis, characterization, corrosion resistance and in-vitro bioactivity behavior of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applications. Materials 11(9), 1602 (2018)

    Article  Google Scholar 

  4. Bhushan, B., Singh, A., Singh, R., Mehta, J.S., Gupta, A., Prakash, C.: Fabrication and characterization of a new range of β-type Ti-Nb-Ta-Zr-xHaP (x = 0, 10) alloy by mechanical alloying and spark plasma sintering for biomedical applications. Mater. Today: Proc. 5(14), 27749–27756 (2018)

    Google Scholar 

  5. Singh, B., Singh, R., Mehta, J.S., Gupta, A., Singh, M., Singh, S., Prakash, C.: Nano-mechanical characterization of Mg-Zn-Mn-Si alloy fabricated by spark plasma sintering for biomedical applications. Mater. Today: Proc. 5(14), 27742–27748 (2018)

    Google Scholar 

  6. Singh, B.P., Singh, R., Mehta, J.S., Prakash, C.: Fabrication of biodegradable low elastic porous Mg-Zn-Mn-HA alloy by spark plasma sintering for orthopaedic applications. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 225, no. 1, p. 012050, Aug 2017

    Google Scholar 

  7. Singh, R., Singh, B.P., Gupta, A., Prakash, C.: Fabrication and characterization of Ti-Nb-HA alloy by mechanical alloying and spark plasma sintering for hard tissue replacements. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 225, no. 1, p. 012051, Aug 2017

    Google Scholar 

  8. Lauf, R.J., Bible, D.W., Johnson, A.C., Everliegh, C.A.: 2 to 18 GHz broadband microwave heating systems. Microwave J. 36, 24–27 (1993)

    Google Scholar 

  9. Ku, H.S., Siores, E., Ball, J.A.R.: Review—microwave processing of materials: Part I. The Honking Institution of Engineers Transactions, 8, 31–37 (2001)

    Google Scholar 

  10. Thostenson. E.T., Chou. T.: Microwave processing: fundamentals and applications. Composites: Part A 30, 1055–1071 (1999)

    Google Scholar 

  11. Menendez, J.A., Arenillas, A., Fidalgo, B.: Microwave heating processes involving carbon materials. Fuel Process. Technol. 91, 1–8 (2010)

    Article  Google Scholar 

  12. Zhou. J., Shi, C., Mei, B.: Research on the technology and the mechanical properties of the microwave processing of polymer. J. Mater. Process. Technol. 137, 156–158 (2003)

    Google Scholar 

  13. Bruce, R.W., Fliflet, A.W., Huey, H.E., Stephenson, C.: Microwave sintering and melting of titanium powder for low-cost processing. Key Eng. Mater. 436, 131–140 (2010)

    Article  Google Scholar 

  14. Ku. H.S., Siores, E., Ball, J.A.R., Review—microwave processing of materials: part I. The Honking Institution of Engineers Transactions, 8, 31–37 (2011)

    Google Scholar 

  15. Leonelli, C., Veronesi, P., Denti, L., Gatto, A., Luliano, L.: Microwave assisted sintering of green metal parts. J. Mater. Process. Technol. 205, 489–496 (2008)

    Article  Google Scholar 

  16. Huang, Z., Gotoh, M., Hirose, Y.: Improving sinter-ability of ceramics using hybrid microwave heating. J. Mater. Process. Technol. 209, 2446–2452 (2009)

    Article  Google Scholar 

  17. Singh, S., Gupta, D., Jain, V., Sharma, A.K.: Microwave processing of materials and applications in manufacturing industries: a review, Mater. Manuf. Process. (2015)

    Google Scholar 

  18. Thostenson, E.T., Chou, T.W.: Microwave processing: fundamentals and applications. Compos. A 30, 1055–1071 (1999)

    Article  Google Scholar 

  19. Zhu, S., Fahrenholtz, W.G., Hilmas, G.E. et al.: Microwave sintering of a ZrB2–B4C particulate ceramic composite. Compos. A, 39, 449–453 (2008); Mijovic, J., Wijaya, J.: Review of cure of polymers and composites by microwave energy. Polym. Compos. 11(3), 184–191 (1990)

    Google Scholar 

  20. Mijovic, J., Wijaya, J.: Review of cure of polymers and composites by microwave energy. Polym. Compos. 11(3), 184–191 (1990)

    Article  Google Scholar 

  21. Agrawal, D.: Microwave sintering of ceramics, composites, metals, and transparent materials. J. Mater. Edu. 19(4, 5 & 6), 49–58 (1999)

    Google Scholar 

  22. Gupta, D., Sharma, A.K.: Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation. Wear 271(9), 1642–1650 (2011)

    Article  Google Scholar 

  23. Zafar, S., Sharma, A.K.: On friction and wear behaviour of WC-12Co microwave clad. Tribol. Trans. 58, 584–591 (2015)

    Article  Google Scholar 

  24. Prasad, A., Gupta, D.: Microwave cladding: Emerging innovative cladding process. Emerg. Trends Eng. Technol. 271 (2013)

    Google Scholar 

  25. Oghbaei, M., Mirzaee, O.: Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys. Compd. 494, 175–189 (2010)

    Article  Google Scholar 

  26. Vasudev, H., Thakur, L., Singh, H.: A review on tribo-corrosion of coatings in glass manufacturing industry and performance of coating techniques against high temperature corrosion and wear. i-Manager’s J. Materi. Sci. 5, 38–48 (2017)

    Google Scholar 

  27. Vasudev, H., Thakur, L., Bansal, A., Singh, H., Zafar, S.: High temperature oxidation and erosion behaviour of HVOF sprayed bilayer Alloy-718/NiCrAlY coating. Surf. Coat. Technol. 362, 366–380 (2019)

    Article  Google Scholar 

  28. Vasudev, H., Thakur, L., Bansal, A., Singh, H.: Mechanical and microstructural behaviour of wear resistant coatings on cast iron lathe machine beds and slides. Kovove Mater. 56(1), 55–63 (2018)

    Google Scholar 

  29. Bansal, A., Vasudev, H., Sharma, A.K., Kumar, P.: Investigation on the effect of post weld heat treatment on microwave joining of the Alloy-718 weldment. Mater. Res. Express 6(8), 086554 (2019)

    Article  Google Scholar 

  30. Vasudev, H., Singh, G., Bansal, A., Vardhan, S., Thakur, L.: Microwave heating and its applications in surface engineering: a review. Mater. Res. Express 6(10), 102001 (2019)

    Article  Google Scholar 

  31. Prakash, C., Singh, S., Ramakrishna, S., Królczyk, G., Le, C.H.: Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications. J. Alloy. Compd. 824, 153774 (2020)

    Article  Google Scholar 

  32. Prakash, C., Singh, S., Basak, A., Królczyk, G., Pramanik, A., Lamberti, L., Pruncu, C.I.: Processing of Ti50Nb50–xHAx composites by rapid microwave sintering technique for biomedical applications. J. Mater. Res. Technol. 9(1), 242–252 (2020)

    Article  Google Scholar 

  33. Prakash, C., Singh, S., Sharma, S., Singh, J., Singh, G., Mehta, M., Mittal, M., Kumar, H.: Fabrication of low elastic modulus Ti50Nb30HA20 alloy by rapid microwave sintering technique for biomedical applications. Mater. Today: Proc. 21, 1713–1716 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh Vasudev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, G., Vasudev, H., Arora, H. (2020). A Short Note on the Processing of Materials Through Microwave Route. In: Singh, S., Prakash, C., Ramakrishna, S., Krolczyk, G. (eds) Advances in Materials Processing . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4748-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4748-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4747-8

  • Online ISBN: 978-981-15-4748-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics