Skip to main content

Methylation of Inflammatory Cells in Lung Diseases

  • Chapter
  • First Online:
Single-cell Sequencing and Methylation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1255))

Abstract

This chapter overviews roles of DNA methylation in inflammatory cell biology with the focuses on lymphocytes and macrophages/monocytes in lung diseases, although the molecular mechanisms by which target genes are methylated and regulated in lung diseases remain unclear. Most of epigenetic studies on DNA methylation of target genes in lung diseases mainly demonstrated the correlation of DNA methylation of target genes with the levels of other corresponding factors, with the specificity of clinical phenomes, and with the severity of lung diseases. There is an urgent need to identify and validate the specificity and regulatory mechanisms of inflammatory cell epigenetics in depth. The epigenetic heterogeneity among different subsets of T cells and among promoters or non-promoters of target genes should be furthermore clarified in acute or chronic lung diseases and cancers. The hyper/hypo-methylation and modifications of chromosol and extrachromosomal DNA may result in alternations in proteins within inflammatory cells, which can be identified as disease-specific biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suarez-Alvarez B, Baragano Raneros A, Ortega F, Lopez-Larrea C (2013) Epigenetic modulation of the immune function: a potential target for tolerance. Epigenetics 8(7):694–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koppelman GH, Nawijn MC (2011) Recent advances in the epigenetics and genomics of asthma. Curr Opin Allergy Clin Immunol 11(5):414–419

    Article  PubMed  Google Scholar 

  3. Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33(11):1665–1673

    Article  CAS  PubMed  Google Scholar 

  4. Huck S, Deveaud E, Namane A, Zouali M (1999) Abnormal DNA methylation and deoxycytosine-deoxyguanine content in nucleosomes from lymphocytes undergoing apoptosis. FASEB J 13(11):1415–1422

    Article  CAS  PubMed  Google Scholar 

  5. Yung R, Powers D, Johnson K, Amento E, Carr D, Laing T et al (1996) Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice. J Clin Invest 97(12):2866–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barnes PJ (2008) Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 8(3):183–192

    Article  CAS  PubMed  Google Scholar 

  7. Romagnani S (1991) Type 1 T helper and type 2 T helper cells: functions, regulation and role in protection and disease. Int J Clin Lab Res 21(2):152–158

    CAS  PubMed  Google Scholar 

  8. Clark RA (2015) Resident memory T cells in human health and disease. Sci Transl Med 7(269):269rv1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Andersen MH, Schrama D, Thor Straten P, Becker JC (2006) Cytotoxic T cells. J Invest Dermatol 126(1):32–41

    Article  CAS  PubMed  Google Scholar 

  10. Philibert RA, Sears RA, Powers LS, Nash E, Bair T, Gerke AK et al (2012) Coordinated DNA methylation and gene expression changes in smoker alveolar macrophages: specific effects on VEGF receptor 1 expression. J Leukoc Biol 92(3):621–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morikawa H, Sakaguchi S (2014) Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol Rev 259(1):192–205

    Article  CAS  PubMed  Google Scholar 

  12. Leonard JD, Gilmore DC, Dileepan T, Nawrocka WI, Chao JL, Schoenbach MH et al (2017) Identification of natural regulatory T cell epitopes reveals convergence on a dominant autoantigen. Immunity 47(1):107–17.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee SK, Kim JY, Jang BW, Hur SE, Na BJ, Lee M et al (2011) Foxp3(high) and Foxp3(low) Treg cells differentially correlate with T helper 1 and natural killer cells in peripheral blood. Hum Immunol 72(8):621–626

    Article  CAS  PubMed  Google Scholar 

  14. Taylor MD, van der Werf N, Harris A, Graham AL, Bain O, Allen JE et al (2009) Early recruitment of natural CD4+ Foxp3+ Treg cells by infective larvae determines the outcome of filarial infection. Eur J Immunol 39(1):192–206

    Article  CAS  PubMed  Google Scholar 

  15. Wang T, Garcia JG, Zhang W (2012) Epigenetic regulation in particulate matter-mediated cardiopulmonary toxicities: a systems biology perspective. Curr Pharmacogen Personal Med 10(4):314–321

    Article  CAS  Google Scholar 

  16. Singer BD, Mock JR, Aggarwal NR, Garibaldi BT, Sidhaye VK, Florez MA et al (2015) Regulatory T cell DNA methyltransferase inhibition accelerates resolution of lung inflammation. Am J Respir Cell Mol Biol 52(5):641–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J et al (2010) Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol 126(4):845–52.e10

    Article  CAS  PubMed  Google Scholar 

  18. Prunicki M, Stell L, Dinakarpandian D, de Planell-Saguer M, Lucas RW, Hammond SK et al (2018) Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma. Clin Epigenetics 10:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B et al (2017) Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics 9:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu J, Zhang L, Winterroth LC, Garcia M, Weiman S, Wong JW et al (2013) Epigenetically mediated pathogenic effects of phenanthrene on regulatory T cells. J Toxicol 2013:967029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Prescott SL, Clifton V (2009) Asthma and pregnancy: emerging evidence of epigenetic interactions in utero. Curr Opin Allergy Clin Immunol 9(5):417–426

    Article  CAS  PubMed  Google Scholar 

  22. Asosingh K, Swaidani S, Aronica M, Erzurum SC (2007) Th1- and Th2-dependent endothelial progenitor cell recruitment and angiogenic switch in asthma. J Immunol 178(10):6482–6494

    Article  CAS  PubMed  Google Scholar 

  23. Hu WK, Lu XX, Yang S, Xu GP, Lan F, Chen SX et al (2009) Expression of the Th1-specific cell-surface protein Tim-3 increases in a murine model of atopic asthma. J Asthma 46(9):872–877

    Article  CAS  PubMed  Google Scholar 

  24. Chakraborty S, Panda AK, Bose S, Roy D, Kajal K, Guha D et al (2017) Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8(+) Treg cells. Sci Rep 7(1):1628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Selvaraja M, Abdullah M, Arip M, Chin VK, Shah A, Amin NS (2019) Elevated interleukin-25 and its association to Th2 cytokines in systemic lupus erythematosus with lupus nephritis. PLoS One 14(11):e0224707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (∗). Annu Rev Immunol 28:445–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu J, Paul WE (2010) Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 238(1):247–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schulz EG, Mariani L, Radbruch A, Hofer T (2009) Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 30(5):673–683

    Article  CAS  PubMed  Google Scholar 

  29. Begin P, Nadeau KC (2014) Epigenetic regulation of asthma and allergic disease. Allergy, Asthma Clin Immunol 10(1):27

    Article  CAS  Google Scholar 

  30. Sanders VM (2006) Epigenetic regulation of Th1 and Th2 cell development. Brain Behav Immun 20(4):317–324

    Article  CAS  PubMed  Google Scholar 

  31. White GP, Hollams EM, Yerkovich ST, Bosco A, Holt BJ, Bassami MR et al (2006) CpG methylation patterns in the IFNgamma promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics. Pediatr Allergy Immunol 17(8):557–564

    Article  PubMed  Google Scholar 

  32. Gilbert KM, Blossom SJ, Erickson SW, Broadfoot B, West K, Bai S et al (2016) Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4(+) T cells. Toxicol Lett 260:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Runyon RS, Cachola LM, Rajeshuni N, Hunter T, Garcia M, Ahn R et al (2012) Asthma discordance in twins is linked to epigenetic modifications of T cells. PLoS One 7(11):e48796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krauss-Etschmann S, Meyer KF, Dehmel S, Hylkema MN (2015) Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin Epigenetics 7:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kwon NH, Kim JS, Lee JY, Oh MJ, Choi DC (2008) DNA methylation and the expression of IL-4 and IFN-gamma promoter genes in patients with bronchial asthma. J Clin Immunol 28(2):139–146

    Article  CAS  PubMed  Google Scholar 

  36. Agarwal S, Rao A (1998) Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9(6):765–775

    Article  CAS  PubMed  Google Scholar 

  37. Yue H, Yan W, Ji X, Gao R, Ma J, Rao Z et al (2017) Maternal exposure of BALB/c mice to indoor NO2 and allergic asthma syndrome in offspring at adulthood with evaluation of DNA methylation associated Th2 polarization. Environ Health Perspect 125(9):097011

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu Q, Zhou B, Zhang Y, Nguyen ET, Du J, Glosson NL et al (2012) DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proc Natl Acad Sci U S A 109(2):541–546

    Article  CAS  PubMed  Google Scholar 

  39. Kim EG, Shin HJ, Lee CG, Park HY, Kim YK, Park HW et al (2010) DNA methylation and not allelic variation regulates STAT6 expression in human T cells. Clin Exp Med 10(3):143–152

    Article  CAS  PubMed  Google Scholar 

  40. Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58(9):2686–2693

    Article  PubMed  Google Scholar 

  41. Brand S, Kesper DA, Teich R, Kilic-Niebergall E, Pinkenburg O, Bothur E et al (2012) DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J Allergy Clin Immunol 129(6):1602–10.e6

    Article  CAS  PubMed  Google Scholar 

  42. Christensen S, Jaffar Z, Cole E, Porter V, Ferrini M, Postma B et al (2017) Prenatal environmental tobacco smoke exposure increases allergic asthma risk with methylation changes in mice. Environ Mol Mutagen 58(6):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brain JD (1980) Pulmonary macrophages: when do they prevent and when do they cause COPD? Chest 77(2 Suppl):264–265

    Article  CAS  PubMed  Google Scholar 

  44. Tager M, Piecyk A, Kohnlein T, Thiel U, Ansorge S, Welte T (2000) Evidence of a defective thiol status of alveolar macrophages from COPD patients and smokers. Chronic obstructive pulmonary disease. Free Radic Biol Med 29(11):1160–1165

    Article  CAS  PubMed  Google Scholar 

  45. Tetley TD (2002) Macrophages and the pathogenesis of COPD. Chest 121(5 Suppl):156S–159S

    Article  CAS  PubMed  Google Scholar 

  46. Ishii T, Wallace AM, Zhang X, Gosselink J, Abboud RT, English JC et al (2006) Stability of housekeeping genes in alveolar macrophages from COPD patients. Eur Respir J 27(2):300–306

    Article  CAS  PubMed  Google Scholar 

  47. Droemann D, Goldmann T, Tiedje T, Zabel P, Dalhoff K, Schaaf B (2005) Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients. Respir Res 6:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Al Tuwaijri A, Gagne-Ouellet V, Madore AM, Laprise C, Naumova AK (2016) Local genotype influences DNA methylation at two asthma-associated regions, 5q31 and 17q21, in a founder effect population. J Med Genet 53(4):232–241

    Article  PubMed  CAS  Google Scholar 

  49. Naumova AK, Leppert M, Barker DF, Morgan K, Sapienza C (1998) Parental origin-dependent, male offspring-specific transmission-ratio distortion at loci on the human X chromosome. Am J Hum Genet 62(6):1493–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kanagaratham C, Chiwara V, Ho B, Moussette S, Youssef M, Venuto D et al (2018) Loss of the zona pellucida-binding protein 2 (Zpbp2) gene in mice impacts airway hypersensitivity and lung lipid metabolism in a sex-dependent fashion. Mamm Genome 29(3-4):281–298

    Article  CAS  PubMed  Google Scholar 

  51. Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Lariviere M, Moussette S et al (2009) Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet 85(3):377–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naumova AK, Olien L, Bird LM, Slamka C, Fonseca M, Verner AE et al (1995) Transmission-ratio distortion of X chromosomes among male offspring of females with skewed X-inactivation. Dev Genet 17(3):198–205

    Article  CAS  PubMed  Google Scholar 

  53. Toh TB, Lim JJ, Chow EK (2019) Epigenetics of hepatocellular carcinoma. Clin Transl Med 8(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ (2019) Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 8(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  55. Luo Y (2019) Refining CRISPR-based genome and epigenome editing off-targets. Cell Biol Toxicol 35(4):281–283

    Article  PubMed  Google Scholar 

  56. Gil J, Betancourt LH, Pla I, Sanchez A, Appelqvist R, Miliotis T et al (2019) Clinical protein science in translational medicine targeting malignant melanoma. Cell Biol Toxicol 35(4):293–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu D, Cheng Y, Wang X (2019) CSGT group. Definition of clinical gene tests. Cell Biol Toxicol 35(2):83–87

    Article  PubMed  Google Scholar 

  58. Kong S, Zhang Y (2019) Deciphering Hi-C: from 3D genome to function. Cell Biol Toxicol 35(1):15–32

    Article  CAS  PubMed  Google Scholar 

  59. Ghufran MS, Soni P, Kanade SR (2019) Aflatoxin-induced upregulation of protein arginine methyltransferase 5 is mediated by protein kinase C and extracellular signal-regulated kinase. Cell Biol Toxicol 35(1):67–80

    Article  CAS  PubMed  Google Scholar 

  60. Ansari D, Toren W, Zhou Q, Hu D, Andersson R (2019) Proteomic and genomic profiling of pancreatic cancer. Cell Biol Toxicol 35(4):333–343

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mirtavoos-Mahyari H, Ghafouri-Fard S, Khosravi A, Motevaseli E, Esfahani-Monfared Z, Seifi S et al (2019) Circulating free DNA concentration as a marker of disease recurrence and metastatic potential in lung cancer. Clin Transl Med 8(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gong J, Chehrazi-Raffle A, Placencio-Hickok V, Guan M, Hendifar A, Salgia R (2019) The gut microbiome and response to immune checkpoint inhibitors: preclinical and clinical strategies. Clin Transl Med 8(1):9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Gao, H., Wang, X., Zeng, Y. (2020). Methylation of Inflammatory Cells in Lung Diseases. In: Yu, B., Zhang, J., Zeng, Y., Li, L., Wang, X. (eds) Single-cell Sequencing and Methylation. Advances in Experimental Medicine and Biology, vol 1255. Springer, Singapore. https://doi.org/10.1007/978-981-15-4494-1_5

Download citation

Publish with us

Policies and ethics