Skip to main content

Effects of Different Vegetable Oils and Additives in Gearbox Operation and its Condition Monitoring

  • Conference paper
  • First Online:
Advances in Mechanical Engineering

Abstract

There is significant worldwide attention in recent time on condition-based intensive care of gear transmission systems across the globe from both industries and academia. The reason behind this is an effective CBM will always extend the life span of the rotating equipment and helps in reducing maintenance cycles. For the mechanical component’s good working cycle, different entities such as lubrication oil properties, operating speed, load condition, lubrication [oil and additives], temperature, and wear component are the major parameters which play contributory role. Vegetable oil as lubricants has many good and useful physicochemical properties. Vegetable oils possess high lubricity, viscosity Index, flash point, and low losses in evaporative. In this research work, a comparative behavior study of a designed worm gear test rig is done between selected commercial gear oil (HP EP 90) and natural edible and non-edible vegetable oils (used as gear oils) (natural coconut and castor oil) with and without additives (garlic oil and rapeseed oil). The temperature analyzing techniques were used to describe the performance of worm gear system as a function of load applied on the worm, and the temperature responses of a worm gear are plotted with varying loading conditions for the selected oils and additives. A mechanical closed-loop test rig is developed for carrying out this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Opalić M (1984) Prilogistraživanjuopteretivostibokovapužnih kola pužnihprenosnika. In: Contribution to study carrying capacity flanks of worm wheel of worm gear, Ph. D. thesis. Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia

    Google Scholar 

  2. Szeri AZ (1998) Fluid film lubrication—theory and design. Cambridge University Press, New York

    Book  Google Scholar 

  3. Ruggieroa A, D’Amato R, Merola M, Valášek P (2017) Tribological characterization of vegetal lubricants: comparative experimental investigation on jatropha curcas L oil, rapeseed methyl ester oil, hydrotreated rapeseed oil. Tribol Int 109:529–540

    Article  Google Scholar 

  4. Thottackkad MV, Perikinalil RK, Kumarapillai PN (2012) Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nano particles. Int J Precision Eng Manufact 13(1):111–116

    Article  Google Scholar 

  5. Mannekote JK, Kailas SV (2011) Experimental investigation of coconut and palm oils as lubricants in four stroke engine. Tribol Online 6(1):76–82

    Article  Google Scholar 

  6. Li W, Jiang C, Chao M, Wang X (2014) Natural garlic oil as a high-performance, environmentally friendly, extreme pressure additive in lubricating oils. ACS Publication, pp 798–803

    Google Scholar 

  7. Jayadas NH, Nair KP, Ajithkumar G (2007) Tribological evaluation of coconut oil as an environment-friendly lubricant. Tribol Int 40:350–354

    Article  Google Scholar 

  8. Wu X, Zhao Q, Zhang M, Li W, Zhaoa G, Wang X (2014) Tribological properties of castor oil tris (diphenyl phosphate) as a high-performance antiwear additive in lubricating greases for steel/steel contacts at elevated temperature. Royal Soc Chem 4(97):54760–54768

    Google Scholar 

  9. Shanhua Q, Xuliang C, Liguo L, Qingzhong L (2016) Tribological properties of the castor oil affected by the additive of the ionic liquid [HMIM] BF4. J Tribol 138(1)

    Google Scholar 

  10. Penga Z, Kessissogloub NJ, Coxa M (2005) Study of the effect of contaminant particles in lubricants using wear debris and vibration condition monitoring techniques. Int J Sci Technol Friction 258(11–12):1651–1662

    Google Scholar 

  11. Gnanasekaran D, Chavidi VP (2018) Vegetable oil based bio lubricants and transformer fluids applications in power plants, materials forming, machining and tribology. Springer, Berlin

    Book  Google Scholar 

  12. Mobarak HM, Mohamad N, Masjuki HH, Kalam MA, Al Mahmud KAH, Habibullah M, Ashraful AM (2014) The prospects of bio lubricants as alternatives in automotive applications. Renew Sustain Energy Rev 33:34–43

    Article  Google Scholar 

  13. Karmakar G, Ghosh P, Sharma BK (2017) Chemically modifying vegetable oils to prepare green lubricants. Lubricants

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupkumar Dube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dube, A., Jaybhaye, M.D. (2021). Effects of Different Vegetable Oils and Additives in Gearbox Operation and its Condition Monitoring. In: Kalamkar, V., Monkova, K. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-3639-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3639-7_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3638-0

  • Online ISBN: 978-981-15-3639-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics