Skip to main content

Photosynthetic Performances of Marine Microalgae Under Influences of Rising CO2 and Solar UV Radiation

  • Chapter
  • First Online:
Microbial Photosynthesis

Abstract

Marine photosynthesis contributes approximately half of the global primary productivity. Ocean climate changes, such as increasing dissolved CO2 in seawater and consequently declining pH (known as ocean acidification, OA), may alter marine photosynthetic performance. There are numerous studies on the effects of OA on photosynthetic organisms, but controversial findings indicate positive, neutral, and negative influences. Most of the studies so far have been conducted under controlled conditions that ignored the presence of solar UV radiation. Increased CO2 availability may play a fertilizing role, while the concurrent pH drop may exert pressure on microalgal cells, especially during the night period. It is known that elevated CO2 concentrations downregulate CO2-concentrating mechanisms (CCMs), and intracellular concentrations of dissolved inorganic carbon in diatoms grown under elevated CO2 levels can be much lower than that in low CO2-grown ones. Such a reduced CO2 availability within cells in response to increased CO2 in the water can lead to enhanced photorespiration due to an increased O2 to CO2 ratio around the carboxylating and oxygenating enzyme, RuBisCO. Therefore, negative and positive effects of OA may depend on light levels, since the saved energy due to downregulation of CCMs can benefit growth under light-limited conditions but enhance photoinhibition under light-excessive conditions. OA affects metabolic pathways in phytoplankton. It augments ß-oxidation and the citric acid cycle, which accumulates toxic phenolic compounds. In the upper mixed layer, phytoplankton are exposed to excessive PAR and UV radiation (UVR). The calcareous incrustations of calcified microalgae, known to shield the organisms from UVR, are thinned due to OA, exposing the cells to increased solar UV and further inhibiting their calcification and photosynthesis, reflecting a compounded impact. Such UV and OA interactive effects are expected to reduce primary productivity in oligotrophic pelagic surface waters. In this chapter, we review and analyze recent results on effects of OA and UV and their combined effects on marine photosynthesis of microalgae, which falls in the context of marine photosynthesis under changing ocean environments and multiple stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bais, A., McKenzie, R., Bernhard, G., Aucamp, P., Ilyas, M., Madronich, S., & Tourpali, K. (2015). Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences, 14(1), 19–52.

    CAS  Google Scholar 

  • Beardall, J., Stojkovic, S., & Gao, K. (2014). Interactive effects of nutrient supply and other environmental factors on the sensitivity of marine primary producers to ultraviolet radiation: Implications for the impacts of global change. Aquatic Biology, 22, 5–23.

    Google Scholar 

  • Brennan, G., & Collins, S. (2015). Growth responses of a green alga to multiple environmental drivers. Nature Climate Change, 5, 892–897.

    Google Scholar 

  • Chen, S., & Gao, K. (2011). Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae). Hydrobiologia, 675, 105–117.

    CAS  Google Scholar 

  • Collins, S., Sültemeyer, D., & Bell, G. (2006). Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2. Plant Cell Environment, 29, 1812–1819.

    CAS  Google Scholar 

  • Gao, K., & Campbell, D. (2014). Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review. Functional Plant Biology, 41, 449–459.

    CAS  PubMed  Google Scholar 

  • Gao, K., Wu, Y., Li, G., Wu, H., Villafañe, E. V., & Helbling, E. W. (2007). Solar UV-radiation drives CO2-fixation in marine phytoplankton: A double-edged sword. Plant Physiology, 144, 54–59.

    Google Scholar 

  • Gao, K., Li, P., Watanabe, T., & Helbling, E. W. (2008). Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) platensis (Cyanophyta). Journal of Phycology, 44, 777–786.

    PubMed  Google Scholar 

  • Gao, K., Ruan, Z., Villafane, V. E., Gattuso, J.-P., & Helbling, E. W. (2009). Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnology and Oceanography, 54(6), 1855–1862.

    CAS  Google Scholar 

  • Gao, K., Helbling, E. W., Häder, D.-P., & Hutchins, D. A. (2012a). Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Marine Ecology Progress Series, 470, 167–189.

    CAS  Google Scholar 

  • Gao, K. S., Xu, J. T., Gao, G., Li, Y. H., Hutchins, D. A., Huang, B. Q., Wang, L., Zheng, Y., Jin, P., Cai, X. N., Häder, D. P., Li, W., Xu, K., Liu, N. N., & Riebesell, U. (2012b). Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change, 2(7), 519–523.

    CAS  Google Scholar 

  • Gao, K., Beardall, J., Häder, D.-P., Hall-Spencer, J. M., Gao, G., & Hutchins, D. A. (2019). Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation and deoxygenation. Frontiers in Marine Science, 6, 322.

    Google Scholar 

  • García-Gómez, C., Gordillo, F. J., Palma, A., Lorenzo, M. R., & Segovia, M. (2014). Elevated CO2 alleviates high PAR and UV stress in the unicellular chlorophyte Dunaliella tertiolecta. Photochemical & Photobiological Sciences, 13(9), 1347–1358.

    Google Scholar 

  • García-Gómez, C., Mata, M. T., Van Breusegem, F., & Segovia, M. (2016). Low-steady-state metabolism induced by elevated CO2 increases resilience to UV radiation in the unicellular green-algae Dunaliella tertiolecta. Environmental and Experimental Botany, 132, 163–174.

    Google Scholar 

  • Giordano, M., Beardall, J., & Raven, J. A. (2005). CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology, 56, 99–131.

    CAS  PubMed  Google Scholar 

  • Häder, D.-P., & Gao, K. (2015). Interactions of anthropogenic stress factors on marine phytoplankton. Frontiers in Environmental Science, 3, 14.

    Google Scholar 

  • Häder, D.-P., Williamson, C. E., Wängberg, S.-A., Rautio, M., Rose, K. C., Gao, K., Helbling, E. W., Sinha, R. P., & Worrest, R. (2015). Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical & Photobiological Sciences, 14, 108–126.

    Google Scholar 

  • Helbling, E. W., Gao, K., Gonçalves, R. J., Wu, H., & Villafañe, V. E. (2003). Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing. Marine Ecology Progress Series, 259, 59–66.

    CAS  Google Scholar 

  • Hennon, G. M., Quay, P., Morales, R. L., Swanson, L. M., & Armbrust, E. V. (2014). Acclimation conditions modify physiological response of the diatom Thalassiosira pseudonana to elevated CO2 concentrations in a nitrate-limited chemostat. Journal of Phycology, 50, 243–253.

    CAS  PubMed  Google Scholar 

  • Hopkinson, B. M., Dupont, C. L., Allen, A. E., & Morel, F. M. M. (2011). Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences of the United States of America, 108, 3830–3837.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Liu, X., Laws, E. A., Bingzhang, C., Li, Y., Xie, Y., Wu, Y., Gao, K., & Huang, B. (2018). Effects of increasing atmospheric CO2 on the marine phytoplankton and bacterial metabolism during a bloom: A coastal mesocosm study. Science of the Total Environment, 633, 618–629.

    CAS  PubMed  Google Scholar 

  • Hutchins, D. A., Walworth, N. G., Webb, E. A., Saito, M. A., Moran, D., McIlvin, M. R., Gale, J., & Fu, F.-X. (2015). Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nature Communications, 6(1), 1–7.

    Google Scholar 

  • Jin, P., Gao, K., Villafañe, V., Campbell, D., & Helbling, W. (2013). Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation. Plant Physiology, 162, 2084–2094.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, P., Wang, T., Liu, N., Dupont, S., Beardall, J., Boyd, P. W., Riebesell, U., & Gao, K. (2015). Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications, 6, 8714.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, P., Ding, J. C., Xing, T., Riebesell, U., & Gao, K. (2017). High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi. Marine Ecology Progress Series, 568, 47–58.

    Google Scholar 

  • Jones, G. J., & Morel, F. M. (1988). Plasmalemma redox activity in the diatom Thalassiosira: A possible role for nitrate reductase. Plant Physiology, 87(1), 143–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.-M., Lee, K., Shin, K., Kang, J.-H., Lee, H.-W., Kim, M., Jang, P.-G., & Jang, M.-C. (2006). The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography, 51(4), 1629–1636.

    CAS  Google Scholar 

  • Li, G., & Gao, K. (2013). Cell size-dependent effects of solar UV radiation on primary production in coastal waters of the South China Sea. Estuaries and Coasts, 36, 728–736.

    CAS  Google Scholar 

  • Li, G., Wu, Y., & Gao, K. (2009). Effects of Typhoon Kaemi on coastal phytoplankton assemblages in the South China Sea, with special reference to the effects of solar UV radiation. Journal of Geophysical Research-Biogeosciences, 114, G04029. https://doi.org/10.1029/2008JG000896.

  • Li, G., Gao, K., & Gao, G. (2011). Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea. Photochemistry and Photobiology, 87(2), 329–334.

    CAS  PubMed  Google Scholar 

  • Li, F. T., Wu, Y. P., Hutchins, D. A., Fu, F. X., & Gao, K. S. (2016). Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations. Biogeosciences, 13, 6247–6259.

    CAS  Google Scholar 

  • Li, F., Beardall, J., Collins, S., & Gao, K. (2017). Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Global Change Biology, 23(1), 127–137.

    PubMed  Google Scholar 

  • Li, F., Beardall, J., Gao, K., & Sathyendranath, H. e. S. (2018). Diatom performance in a future ocean: Interactions between nitrogen limitation, temperature, and CO2-induced seawater acidification. ICES Journal of Marine Science, 75(4), 1451–1464.

    Google Scholar 

  • Liu, N., Beardall, J., & Gao, K. (2017). Elevated CO2 and associated seawater chemistry do not benefit a model diatom grown with increased availability of light. Aquatic Microbial Ecology, 79, 137–147.

    Google Scholar 

  • Madshus, I. H. (1988). Regulation of intracellular pH in eukaryotic cells. Biochemical Journal, 250(1), 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moog, P. R., & Brüggemann, W. (1994). Iron reductase systems on the plant plasma membrane—A review. Plant and Soil, 165(2), 241–260.

    CAS  Google Scholar 

  • Piazena, H., Perez-Rodrigues, E., Häder, D.-P., & Lopez-Figueroa, F. (2002). Penetration of solar radiation into the water column of the central subtropical Atlantic Ocean – optical properties and possible biological consequences. Deep-Sea Research Part II, 49, 3513–3528.

    CAS  Google Scholar 

  • Rajneesh, A. C., Pathak, J., Ahmed, H., Singh, V., Singh, D. K., Pandey, A., Singh, S. P., Richa, D.-P. H., & Sinha, R. P. (2018). Ultraviolet radiation-induced DNA damage and mechanisms of repair in cyanobacteria: An overview. Biotechnology in agriculture, industry and medicine. Trends in life science research. R. P. Sinha and U. P. Shrivastava (pp. 169–218). New York: Nova Biomedical.

    Google Scholar 

  • Rastogi, R., Singh, S., Incharoensakdi, A., Häder, D.-P., & Sinha, R. (2014). Ultraviolet radiation-induced generation of reactive oxygen species, DNA damage and induction of UV-absorbing compounds in the cyanobacterium Rivularia sp. HKAR-4. South African Journal of Botany, 90, 163–169.

    CAS  Google Scholar 

  • Riebesell, U., & Tortell, P. D. (2011). Effects of ocean acidification on pelagic organisms and ecosystems. Ocean acidification. J. P. Gattuso and L. Hansson (pp. 99–116). Oxford: Oxford University Press.

    Google Scholar 

  • Riebesell, U., Schulz, K. G., Bellerby, R., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, A., & Wohlers, J. (2007). Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450(7169), 545.

    CAS  PubMed  Google Scholar 

  • Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Won, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., & Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. Science, 305, 367–371.

    CAS  PubMed  Google Scholar 

  • Shi, D., Hong, H., Su, X., Liao, L., Chang, S., & Lin, W. (2019). The physiological response of marine diatoms to ocean acidification: Differential roles of seawater pCO2 and pH. Journal of Phycology, 55, 521–533.

    CAS  PubMed  Google Scholar 

  • Smith, F. A., & Raven, J. A. (1979). Intracellular pH and its regulation. Annual Review of Plant Physiology, 30, 289–311.

    CAS  Google Scholar 

  • Suffrian, K., Schulz, K. G., Gutowska, M., Riebesell, U., & Bleich, M. (2011). Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. New Phytologist, 190(3), 595–608.

    CAS  PubMed  Google Scholar 

  • Tong, S., Gao, K., & Hutchins, D. A. (2018). Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2. Global Change Biology, 24(7), 3055–3064.

    PubMed  Google Scholar 

  • Tortell, P. D., Rau, G. H., & Morel, F. M. (2000). Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnology and Oceanography, 45(7), 1485–1500.

    CAS  Google Scholar 

  • Walworth, N. G., Fu, F.-X., Webb, E. A., Saito, M. A., Moran, D., Mcllvin, M. R., Lee, M. D., & Hutchins, D. A. (2016). Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean. Nature Communications, 7, 12081.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Gao, K., & Riebesell, U. (2010). CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences, 7, 2915–2923.

    CAS  Google Scholar 

  • Wu, X., Gao, G., Giordano, M., & Gao, K. (2012). Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundamental and Applied Limnology/Archiv für Hydrobiologie, 180(4), 279–290.

    CAS  Google Scholar 

  • Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., & Finkel, Z. V. (2014). Ocean acidification enhances the growth rate of larger diatoms. Limnology and Oceanography, 59(3), 1027–1034.

    CAS  Google Scholar 

  • Xu, Z., & Gao, K. (2012). NH4+ enrichment and UV radiation interact to affect the photosynthesis and nitrogen uptake of Gracilaria lemaneiformis (Rhodophyta). Marine Pollution Bulletin, 64(1), 99–105.

    CAS  PubMed  Google Scholar 

  • Xu, K., & Gao, K. (2015). Solar UV irradiances modulate effects of ocean acidification on the Coccolithophorid Emiliania huxleyi. Photochemistry and Photobiology, 91(1), 92–101.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunshan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, K., Häder, DP. (2020). Photosynthetic Performances of Marine Microalgae Under Influences of Rising CO2 and Solar UV Radiation. In: Wang, Q. (eds) Microbial Photosynthesis. Springer, Singapore. https://doi.org/10.1007/978-981-15-3110-1_7

Download citation

Publish with us

Policies and ethics