Skip to main content

The Multifaceted Life of Microbes: Survival in Varied Environments

  • Chapter
  • First Online:
Microbial Versatility in Varied Environments

Abstract

The world of microorganisms comprises a vast diversity of living organisms, each with its individual set of genes, cellular components, and metabolic reactions that interact within the cell and communicate with the environment in many different ways. Microbes perform several key ecosystem functions. They provide a number of ecological services like soil formation, nutrient cycling, plant growth, bioremediation, source for pharmaceuticals, etc. Earth may be a home for more than 1012 microbial species. These species are present in varied environments, many of which for other life forms are extremely hostile. Microbes have been found in varied environments ranging from the tropics to the Arctic and Antarctica, from underground mines and oil fields to the stratosphere and the top of great mountains, from deserts to the Dead Sea, from aboveground hot springs to underwater hydrothermal vents. They can survive at pressures up to 110 MPa, at extreme acid (pH 0) to extreme alkaline (pH 12.8) conditions, at temperatures as high as 122 °C to as low as −20 °C, in toxic wastes, in organic solvents, heavy metals, guts of insects, roots of plants, low oxygen conditions, etc. These microorganisms are classified according to their habitats such as thermophiles/hyperthermophiles, psychrophiles, acidophiles and alkaliphiles, barophiles, and halophiles. Studies on microbial life, their diversity, physiology, genetics, ecology, and biochemistry can reveal a lot in terms of the characteristics of biological processes, such as biochemical limits to macromolecular stability and genetic instructions for constructing macromolecules. These organisms have also provided a number of clues to the origin and evolution of life. Further, a study of microbes in conflict environments has become vital in the field of research in astrobiology, since the microbes found in extreme environments may be analogous to potential life forms in other planets. In the present times of climate change, the study of microbes living at the edge of life has become even more important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Molecul Cellula Biol 20(21):8093–8102. https://doi.org/10.1128/mcb.20.21.8093-8102.2000

    Article  CAS  Google Scholar 

  • Antranikian G (2009) Extremophiles and biotechnology. In eLS (ed). https://doi.org/10.1002/9780470015902.a0000391.pub2

  • Appukuttan D, Rao AS, Apte SK (2006) Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl Environ Microbiol 72(12):7873–7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer H, Giebl H, Hitzenberger R, Kasper-Giebl A, Reischl G, Zibuschka F et al (2003) Airborne bacteria as cloud condensation nuclei. J Geophys Res 108:4658

    Google Scholar 

  • Blank GB, Cameron RE (1966) Desert algae-soil crusts and diaphanous substrata as algal habitats, vol 32. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, pp 1–41

    Google Scholar 

  • Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG et al (2009) Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 75(15):5121–5130. https://doi.org/10.1128/AEM.00447-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69(8):4575–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Certes A (1884) Note upon the effect of high pressures on the vitality of minute fresh-water and salt-water organisms. Bull U S Fish Comm 4(28):433–435

    Google Scholar 

  • Christner BC, Morris CE, Foreman CM, Cai R, Sands DC (2008) Ubiquity of biological ice nucleators in snowfall. Science 319:1214

    Article  CAS  PubMed  Google Scholar 

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Natur Rev Microbiol 7(3):237

    Article  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M et al (2004) Accumulation of Mn (II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306(5698):1025–1028

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S, Arora P (1997) Genetic analysis of the gas vesicle cluster in haloarchaea. FEMS Microbiol Lett 153:1–10

    Article  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Revi 22(3):151–175

    Article  Google Scholar 

  • DeLeon-Rodriguez N, Lathem TL, Rodriguez-RLM, Barazesh JM, Anderson BE et al (2013) Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. PNAS U S A 110:2575–2580

    Article  CAS  Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63(5):2105–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5(3):301–309

    Article  CAS  PubMed  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:512840. https://doi.org/10.1155/2013/512840

  • Fujisawa M, Fackelmayer OJ, Liu J, Krulwich TA, Hicks DB (2010) The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant. J Biol Chem 285(42):32105–32115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes JI, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–225

    CAS  Google Scholar 

  • Griffin DW (2004) Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia 20:135–140

    Article  Google Scholar 

  • Jaenicke R, Bernhardt G, Lüdemann HD, Stetter KO (1988) Pressure-induced alterations in the protein pattern of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Appl Environ Microbiol 54(10):2375–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jawad A, Snelling AM, Heritage J, Hawkey PM (1998) Exceptional desiccation tolerance of Acinetobacter radioresistens. J Hospital Inf 39(3):235–240

    Article  CAS  Google Scholar 

  • Jolivet E, Corre E, Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8(3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9

    Article  Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana trench, challenger deep, at a depth of 11,000 meters. Appl Environ Microbiol 64(4):1510–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh H, Asthana RK, Ohmori M (2004) Gene expression in the cyanobacterium Anabaena sp. PCC7120 under desiccation. Microbial ecol 47(2):164–174

    Article  CAS  Google Scholar 

  • Ladenstein R, Ren B (2006) Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS J 273(18):4170–4185

    Article  CAS  PubMed  Google Scholar 

  • Li ZF, Li P, Jing YG, Singh RP, Li YZ (2017) Isolation and characterization of the epothilone gene cluster with flanks from high alkalotolerant strain Sorangium cellulosum (So0157-2). World J Microbiol Biotechnol 33(7):137. https://doi.org/10.1007/s11274-017-2301-y

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Rye HS (2006) GroEL-mediated protein folding: making the impossible, possible. Cri Rev biochem Molecule Biol 41(4):211–239. https://doi.org/10.1080/10409230600760382

    Article  CAS  Google Scholar 

  • Lipman CB (1941) The successful revival of Nostoc commune from a herbarium specimen eighty-seven years old. Bull Torrey Bot Club 1:664–666

    Article  Google Scholar 

  • López-García P (1999) DNA supercoiling and temperature adaptation: a clue to early diversification of life? J Molecula Evol 49(4):439–452

    Article  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8(3):285–289

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW et al (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65(1):44–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A et al (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27(2–3):385–410

    Article  CAS  PubMed  Google Scholar 

  • Mohler O, DeMott PJ, Vali G, Levin Z (2007) Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences 4:2559–2591

    Article  Google Scholar 

  • Musilova M, Wright G, Ward JM, Dartnell LR (2015) Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection. And the correlation between radiation and desiccation resistance. Astrobiology 15(12):1076–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2(3):149–154

    Article  CAS  PubMed  Google Scholar 

  • Narumi I, Satoh K, Cui S, Funayama T, Kitayama S et al (2004) PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54(1):278–285. https://doi.org/10.1111/j.1365-2958.2004.04272.x

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998) Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. Nov. Arch Microbiol 170(5):331–338

    Article  CAS  PubMed  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria. New insights. Biochim Biophys Acta 1717(2):67–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160(3):945–963

    Article  CAS  PubMed  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  PubMed  Google Scholar 

  • Pouleur S, Richard C, Martin J-G, Antoun H (1992) Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl Environ Microbiol 58:2960–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandigursky M, Sandigursky S, Sonati P, Daly MJ, Franklin WA (2004) Multiple uracil-DNA glycosylase activities in Deinococcus radiodurans. DNA Repair 3(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Scambos TA, Camppbell GG, Pope A, Haran T, Muto A et al (2018) Ultralow surface temperature in east Antarctica from satellite thermal infra-red mapping: the coldest place on earth. Geophys Res Lett 45(12):6124–6133

    Article  Google Scholar 

  • Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, Prickett TF et al (2000) Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (cyanobacteria) after years of desiccation. J Bacteriol 182(1):189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31(12):2995–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H (2018) Desiccation and radiation stress tolerance in cyanobacteria. J Basic Microbiol 58(10):813–826

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2016) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic Plains. J Basic Microbiol 56:4–25

    Google Scholar 

  • Sinha RP, Klisch M, Gröniger A, Hader DP (2001) Responses of aquatic algae and cyanobacteria to solar UV-B. In: Responses of plants to UV-B radiation. Springer, Dordrecht, pp 219–236

    Chapter  Google Scholar 

  • Sterner RH, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36(1):39–106

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (Vigna) on growth, symbiosis, seed yield and metal uptake by green-gram plants. Chemosphere 70(1):36–45

    Article  CAS  PubMed  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24(3):263–290

    Article  CAS  PubMed  Google Scholar 

  • Yun YS, Lee YN (2004) Extremophiles 8(3):237–242. https://doi.org/10.1007/s00792-004-0383-6

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetanjali Manchanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.P., Buttar, H.K., Kaur, R., Manchanda, G. (2020). The Multifaceted Life of Microbes: Survival in Varied Environments. In: Singh, R., Manchanda, G., Maurya, I., Wei, Y. (eds) Microbial Versatility in Varied Environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-3028-9_1

Download citation

Publish with us

Policies and ethics