Skip to main content

Role of Microbes for Attaining Enhanced Food Crop Production

  • Chapter
  • First Online:
Microbial Biotechnology: Basic Research and Applications

Abstract

TheĀ global production of food crops is on increase but the perpetual accrual of demographic strain has posed a challenge toward the attainment of global food security. In spite of covering several milestones in enhancing global food production, in a total of 821 million people, one out of nine still sleeps with an empty stomach each night, and one in three has to face the evil of malnutrition. Comprehensively, the world hunger is appraised to have augmented since 2014, as assessed in terms of both percentage and the absolute number of population. Unambiguously, Africa had the highest prevalence of undernourishment, representing 27.4% of its entire population, whereas Asia accounts for 64% of the total malnourished people across the world. Surprisingly, India also serves as a home to one-fourth of all malnourished people worldwide, which makes this country a key focus for confronting the hunger on an international scale. Therefore, in a quest to increase food production, microbes can play tremendous role due to their various incredible potentials. The microflora associated with plants have fabulous potential to improve plant resilience and produce in farming systems. The judicial employment of microbes or their metabolites can heighten nutrient uptake and yield, control pests, and mitigate plant stress responses. The unhidden potential of microbes makes them potent biocontrol agents and promotes their application as biofertilizers and their role as agents for improving soil health along with their plant growth promotion attributes that warrant their employment in agroecosystems for enhancing crop production. Therefore, the present review targets different stratagems which advocate the role of microbes for enhancing the quality and quantity of the produce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ab Rahman SF, Singh E, Pieterse CM, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102ā€“111

    Google ScholarĀ 

  • Abeles FB (1973) Ethylene in plant biology. Academic, New York

    Google ScholarĀ 

  • Ahmad Z, Imran M, Qadeer S, Hussain S, Kausar R, Dawson L, Khalid A (2018) Biosurfactants for sustainable soil management. Adv Agron:81ā€“130. https://doi.org/10.1016/bs.agron.2018.02.002

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393ā€“3398

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • AzcĆ³n-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogensā€“an overview of the mechanisms involved. Mycorrhiza 6(6):457ā€“464

    Google ScholarĀ 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by ā€˜Arthrobacterā€™ Sp. and ā€˜Bacillusā€™ sp. isolated from tomato rhizosphere. Aust J Crop Sci 4(6):378

    CASĀ  Google ScholarĀ 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, New York

    Google ScholarĀ 

  • Bell CW, Asao S, Calderon F, Wolk B, Wallenstein MD (2015) Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biol Biochem 85:170ā€“182

    CASĀ  Google ScholarĀ 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145ā€“152

    Google ScholarĀ 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478ā€“486

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bilali HE, Allahyari MS (2018) Transition towards sustainability in agriculture and food systems: role of information and communication technologies. Inf Process Agric 5:456ā€“464. https://doi.org/10.1016/j.inpa.2018.06.006

    ArticleĀ  Google ScholarĀ 

  • Black RE (2014) Global distribution and disease burden related to micronutrient deficiencies. In: International nutrition: achieving millennium goals and beyond, vol 78. Karger Publishers, pp 21ā€“28

    Google ScholarĀ 

  • Bonfante P, Genre A (2015) Arbuscular mycorrhizal dialogues: do you speak ā€˜plantishā€™ or ā€˜fungishā€™? Trends Plant Sci 20(3):150ā€“154

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bowler C, van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83ā€“116

    CASĀ  Google ScholarĀ 

  • Brunori G, Barjolle D, Dockes A-C, Helmle S, Ingram J, Klerkx L, Moschitz H, Nemes G, Tisenkopfs T (2013) CAP reform and innovation: the role of learning and innovation networks. EuroChoices 12:27ā€“33. https://doi.org/10.1111/1746-692x.12025

    ArticleĀ  Google ScholarĀ 

  • BĆ¼rkert B, Robson A (1994) Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26(9):1117ā€“1124

    Google ScholarĀ 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100(4):1648ā€“1658

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48(5):489ā€“499

    Google ScholarĀ 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34(1):33ā€“41

    Google ScholarĀ 

  • Chen S, Sun D, Chung JS (2007) Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment. J Hazard Mater 144(1ā€“2):577ā€“584

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cho KM, Math RK, Islam SMA, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57:1882ā€“1889

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47(4):289ā€“297

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Compant S, Duffy B, Nowak J, ClĆ©ment C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951ā€“4959

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Conant J (2005) Pesticides are poison, a community guide to environmental health. Hesperian Foundation, CA, USA

    Google ScholarĀ 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society

    Google ScholarĀ 

  • De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33:133ā€“148

    Google ScholarĀ 

  • DeFries RS, Ellis EC, Chapin FS III, Matson PA, Turner BL II, Agrawal A, Crutzen PJ, Field C, Gleick P, Kareiva PM, Lambin E (2012) Planetary opportunities: a social contract for global change science to contribute to a sustainable future. Bioscience 62:603ā€“606

    Google ScholarĀ 

  • Donnelly JS (2002) Great Irish Potato Famine. The History Press

    Google ScholarĀ 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15(1):3ā€“11

    Google ScholarĀ 

  • Duong MH, Penrod SL, Grant SB (1997) Kinetics of p-nitrophenol degradation by Pseudomonas sp.: an experiment illustrating bioremediation. J Chem Educ 74(12):1451

    CASĀ  Google ScholarĀ 

  • Elliot LF, Lynch JM (1994) Biodiversity and soil resilience. In: Greenland DJ, Szabolos I (eds) Soil resilience and sustainable land use, vol 31. CAB International, Wallingford, pp 353ā€“364

    Google ScholarĀ 

  • Evers D, BonnechĆØre S, Hoffmann L, Hausman JF (2007) Physiological aspects of abiotic stress response in potato. Belg J Bot 1:141ā€“150

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization of the United Nations) (2018) Available online: http://www.fao.org/faostat/en/#data/QC

  • FAO (Food and Agriculture Organization of the United Nations), IFAD (International Fund for Agricultural Development), UNICEF, WFP (World Food Programme), and WHO (World Health Organization) (2017) The State of Food Security and Nutrition in the World 2017: building resilience for peace and food security. FAO, Rome

    Google ScholarĀ 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation of Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182ā€“188

    Google ScholarĀ 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manage 196:159ā€“171

    Google ScholarĀ 

  • Gadd GM (2010) Metals, minerals and microbes: geo-microbiology and bioremediation. Microbiology 156:609ā€“643

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Gardener BB, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Progress 3(1):17

    Google ScholarĀ 

  • Gertsson UE, Alsanius BW (2001) Plant response of hydroponically grown tomato to bacterization. In: International symposium on growing media and hydroponics, vol 644, pp 583ā€“588

    Google ScholarĀ 

  • Giri B, Prasad R, Wu Q-S, Varma A (2019) Biofertilizers for sustainable agriculture and environment. Springer International Publishing, Cham. ISBN 978-3-030-18932-7. https://www.springer.com/gp/book/9783030189327

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109ā€“117

    CASĀ  Google ScholarĀ 

  • Goshu D, Kassa B, Ketema M (2013) Measuring diet quantity and quality dimensions of food security in rural Ethiopia. J Dev Agric Econ 5:174ā€“185

    Google ScholarĀ 

  • Gothwal RK, Nigam VK, Mohan MK, Sasmal D, Ghosh P (2007) Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Appl Ecol Environ Res 6(2):101ā€“109

    Google ScholarĀ 

  • Gray E, Smith D (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395ā€“412

    CASĀ  Google ScholarĀ 

  • Gupta AK (2004) The complete technology book on biofertilizers and organic farming. National Institute of Industrial Research Press, India

    Google ScholarĀ 

  • Hartel PG, Alexander M (1986) Role of extracellular polysaccharide production and clays in the desiccation tolerance of cowpea Bradyrhizobia. Soil Sci Soc Am J 50:1193ā€“1198

    CASĀ  Google ScholarĀ 

  • Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112ā€“120

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293(5532):1129ā€“1133

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hepper CM (1975) Extracellular polysaccharides of soil bacteria. In: Walker N (ed) Soil microbiology, a critical review. Wiley, New York, pp 93ā€“111

    Google ScholarĀ 

  • Igual J, Valverde A, Cervantes E, VelĆ”zquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study

    Google ScholarĀ 

  • International Food Policy Research Institute (2018) 2018 Global Food Policy Report. International Food Policy Research Institute, Washington, DC. https://doi.org/10.2499/9780896292970

    BookĀ  Google ScholarĀ 

  • Jackson MB (1997) Hormones from roots as signal for the shoots of stressed plants. Trends Plant Sci 2:22ā€“28

    Google ScholarĀ 

  • Kannaiyan S (ed) (2002) Biotechnology of biofertilizers. Alpha Science Intā€™l Ltd

    Google ScholarĀ 

  • Kaymak HC (2011) Plant growth and health promoting bacteria. In: Maheshwari DK (ed) Microbiology monographs, vol 18. Springer-Verlag, Berlin, pp 45ā€“79. https://doi.org/10.1007/978-3-642-13612-2_3

    ChapterĀ  Google ScholarĀ 

  • Kazan K, Lyons R (2015) The link between flowering time and stress tolerance. J Exp Bot 67(1):47ā€“60

    PubMedĀ  Google ScholarĀ 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355ā€“364

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Khan MS, Zaidi A, Musarrat J (eds) (2009) Microbial strategies for crop improvement. Springer, Berlin

    Google ScholarĀ 

  • Khan A, Singh J, Upadhayay VK, Singh AV, Shah S (2019) Microbial biofortification: a green technology through plant growth promoting microorganisms. In: Sustainable Green Technologies for Environmental Management. Springer, Singapore, pp 255ā€“269. https://doi.org/10.1007/978-981-13-2772-8_13

    ChapterĀ  Google ScholarĀ 

  • Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, Oā€™gara F (2006) Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microb Ecol 51(3):257ā€“266

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Konnova SA, Brykova OS, Sachkova OA, Egorenkova IV, Ignatov VV (2001) Protective role of the polysaccharide containing capsular components of Azospirillum brasilense. Microbiology 70:436ā€“440

    CASĀ  Google ScholarĀ 

  • Kumar A, Bohra B (2006) Green technology in relation to sustainable agriculture. In: Green technologies for sustainable agriculture. Daya Publishing House, Delhi

    Google ScholarĀ 

  • Kumar S, Kaushik G, Dar MA, Nimesh S, Lopez-Chuken UJ, Villarreal-Chiu JF (2018) Microbial degradation of organophosphate pesticides: a review. Pedosphere 28(2):190ā€“208

    Google ScholarĀ 

  • Lal R (1987) Managing the soils of sub-Saharan Africa. Science 236:1069ā€“1076

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lal R (1993) Tillage effects on soil degradation, soil resilience, soil quality and sustainability. Soil Tillage Res 27:1ā€“7

    Google ScholarĀ 

  • Lal R (1997) Degradation and resilience of soils. Philos Trans R Soc Lond (B) 352:997ā€“1010

    Google ScholarĀ 

  • Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17:319ā€“464

    Google ScholarĀ 

  • Lal R (2000) Soil management in the developing countries. Soil Sci 165:57ā€“72

    CASĀ  Google ScholarĀ 

  • Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Sec 1(1):45ā€“57

    Google ScholarĀ 

  • Lal R, Greenland DJ (1979) Soil physical properties and crop production in the tropics. Wiley

    Google ScholarĀ 

  • Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Comstock LE, Gandhi R, Weiner HL (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19(1):32ā€“43

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lucas JA (2011) Advances in plant disease and pest management. J Agric Sci 149:91ā€“114. https://doi.org/10.1017/S0021859610000997

    ArticleĀ  Google ScholarĀ 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541ā€“556

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Mansfield JW (2000) Antimicrobial compounds and resistance. In: Mechanisms of resistance to plant diseases. Springer, Dordrecht, pp 325ā€“370

    Google ScholarĀ 

  • Marchner H (1995) Mineral nutrition of higher plants. Academic, San Diego

    Google ScholarĀ 

  • Mirzaee H, Shuey L, Schenk PM (2015) Transcriptomics of plants interacting with pathogens and beneficial microbes. In: Genomics, proteomics and metabolomics in nutraceuticals and functional foods, vol 4, pp 525ā€“536

    Google ScholarĀ 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. J Agric Biol Sci 7:307ā€“316

    Google ScholarĀ 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606ā€“617

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Murray-Kolb LE (2013) Iron and brain functions. Curr Opin Clin Nutr Metab Care 16(6):703ā€“707

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655ā€“670

    Google ScholarĀ 

  • Nkomoki W, BavorovĆ” M, Banout J (2018) Adoption of sustainable agricultural practices and food security threats: effects of land tenure in Zambia. Land Use Policy 78:532ā€“538. https://doi.org/10.1016/j.landusepol.2018.07.021

    ArticleĀ  Google ScholarĀ 

  • Oerke EC, Dehne HW (2004) Safeguarding productionā€”losses in major crops and the role of crop protection. Crop Prot 23(4):275ā€“285

    Google ScholarĀ 

  • Padmanabhan SY (1973) The great Bengal famine. Annu Rev Phytopathol 11(1):11ā€“24

    Google ScholarĀ 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. The Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Pandey G (2018) Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environ Technol Innov 11:299ā€“307. https://doi.org/10.1016/j.eti.2018.06.012

    ArticleĀ  Google ScholarĀ 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347ā€“375

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, Oā€™connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agr Ecosyst Environ 84(1):1ā€“20

    Google ScholarĀ 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 247ā€“260

    Google ScholarĀ 

  • Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13:63ā€“77

    CASĀ  Google ScholarĀ 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118ā€“126

    CASĀ  Google ScholarĀ 

  • Rangasamy K, Athiappan M, Devarajan N, Samykannu G, Parray JA, Aruljothi KN, Shameem N, Alqarawi AA, Hashem A, Abd_Allah EF (2018) Pesticide degrading natural multidrug resistance bacterial flora. Microb Pathog 114:304ā€“310

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rasmann S, Turlings TC (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62ā€“68

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Roberts MJ, Schimmelpfennig DE, Ashley E, Livingston MJ, Ash MS, Vasavada U (2006) The value of plant disease early-warning systems: a case study of USDAā€™s soybean rust coordinated framework

    Google ScholarĀ 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340ā€“1351

    PubMedĀ  Google ScholarĀ 

  • Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash PC (2018) Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability. Ecol Indic. https://doi.org/10.1016/j.ecolind.2018.05.084

  • Salgueiro MJ, Zubillaga M, Lysionek A, Cremaschi G, Goldman CG, Caro R, De Paoli T, Hager A, Weill R, Boccio J (2000) Zinc status and immune system relationship. Biol Trace Elem Res 76(3):193ā€“205

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17ā€“26

    CASĀ  Google ScholarĀ 

  • Saravanan VS, Subramoniam SR, Raj SA (2004) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz J Microbiol 35(1ā€“2):121ā€“125

    CASĀ  Google ScholarĀ 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4(4):519ā€“537

    Google ScholarĀ 

  • Scandalios JG (1994) Regulation and properties of plant catalases. In: Foyer CH, Mullineaux PM (eds) Causes of photo-oxidative stress and amelioration of defense systems in plants. CRC, Boca Raton, pp 275ā€“316

    Google ScholarĀ 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:e92

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Bacteria in agrobiology: stress management. Springer, Berlin, Heidelberg, pp 205ā€“224

    Google ScholarĀ 

  • Sgherri CLM, Maffei M, Navari-Izzo F (2000) Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J Plant Physiol 157:273ā€“279

    CASĀ  Google ScholarĀ 

  • Sharma SK, Ramesh A, Sharma MP, Joshi OP, Govaerts B, Steenwerth KL, Karlen DL (2010) Microbial community structure and diversity as indicators for evaluating soil quality. In: Lichtfouse E (ed) Biodiversity, biofuels, agroforestry and conservation agriculture, vol 5. Sustainable Agriculture Reviews, Springer, Netherlands, pp 317ā€“358

    Google ScholarĀ 

  • Sharma P, Aggarwal P, Kaur A (2016) Biofortification: a new approach to eradicate hidden hunger. Food Rev Int 33(1):1ā€“21

    Google ScholarĀ 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8(11):1867ā€“1880

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89(6):515ā€“521

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48(1):35ā€“40

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Singh AV, Prasad B, Goel R (2018) Plant growth promoting efficiency of phosphate solubilizing Chryseobacterium sp. PSR 10 with different doses of N and P fertilizers on Lentil (Lens culinaris var. PL-5) growth and yield. Int J Curr Microbiol App Sci 7(05):2280ā€“2289

    Google ScholarĀ 

  • Srivastava MP, Tewari R, Sharma N (2013) Effect of different cultural variables on siderophores produced by Trichoderma spp. Int J Adv Res 1:1ā€“6

    Google ScholarĀ 

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72(2):107ā€“123

    Google ScholarĀ 

  • Subbarao NS (1988) Phosphate solubilizing microorganism. In: Biofertilizer in agriculture and forestry. Regional Biofert. Dev. Centre, Hissar, India, pp 133ā€“142

    Google ScholarĀ 

  • Subramanian KS, Tenshia V, Jayalakshmi K, Ramach V (2009) Role of arbuscular mycorrhizal fungus (Glomus intraradices)(fungus aided) in zinc nutrition of maize. J Agric Biotechnol Sustain Dev 1(1):029ā€“038

    CASĀ  Google ScholarĀ 

  • Tang C, Komai K, Huang R (1989) Allelopathy and the chemistry of the rhizosphere. Phytochem Ecol 9

    Google ScholarĀ 

  • Tang J, Liu LX, Hu SF, Chen YP, Chen J (2009) Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme mediated integration (REMI). Bioresour Technol 100:480ā€“483

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Tatum L (1971) The southern corn leaf blight epidemic. Science 171:1113ā€“1116

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503ā€“527

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Timmusk S, Wagner GH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951ā€“959

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Trivedi P, Schenk PM, Wallenstein MD, Singh BK (2017) Tiny microbes, big yields: enhancing food crop production with biological solutions. J Microbial Biotechnol 10(5):999ā€“1003

    Google ScholarĀ 

  • Ullstrup A (1972) The impacts of the southern corn leaf blight epidemics of 1970ā€“1971. Annu Rev Phytopathol 10:37ā€“50

    Google ScholarĀ 

  • United Nations System Standing Committee on Nutrition (UNSSCN) (2004) 5th report on the world nutrition situation nutrition for improved development outcomes. SCN, Geneva

    Google ScholarĀ 

  • Valverde A, De Maayer P, Oberholster T, Henschel J, Louw MK, Cowan D (2016) Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a living fossil. PLoS One 11(4):e0153353

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Walter GH, Chandrasekaran S, Collins PJ, Jagadeesan R, Mohankumar S, Alagusundaram K, Ebert PR, Daglish GJ, Nayak MK, Mohan S, Srivastava C (2016) The grand challenge of food security: general lessons from a comprehensive approach to protecting stored grain from insect pests in Australia and India. Indian J Entomol 78:7ā€“16

    Google ScholarĀ 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611ā€“647

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wani SP (1990) Inoculation with associative nitrogen fixing bacteria: role in cereal grain production improvement. Indian J Microbiol 30:363ā€“393

    Google ScholarĀ 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23(2):175ā€“193

    CASĀ  Google ScholarĀ 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69

    Google ScholarĀ 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144ā€“3150

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1ā€“4

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361ā€“4365

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P. et al. (2020). Role of Microbes for Attaining Enhanced Food Crop Production. In: Singh, J., Vyas, A., Wang, S., Prasad, R. (eds) Microbial Biotechnology: Basic Research and Applications. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2817-0_3

Download citation

Publish with us

Policies and ethics