Skip to main content

Ant Colony Optimization (ACO-Min) Algorithm for Test Suite Minimization

  • Conference paper
  • First Online:
Progress in Computing, Analytics and Networking

Abstract

This paper presents a test suite (TS) minimization algorithm based on ant colony optimization. The algorithm represents all the test cases in the test suite as nodes of a complete graph. Each test case execution time and corresponding test requirement are stored in the form of a matrix. Ants start from the nodes of the complete graph. The selection of neighbor nodes depends on maximizing requirements and minimizing execution time, for which the ant takes the help of the matrix. The algorithm finds a representative set (RS) of test case which satisfies all the requirements and takes least execution time. The derived representative set satisfies (i) |RS| ⊑ |TS| (ii) τRS ≤ τTS. The representative set also preserves the same fault detection capability, like that of the original test suite, which ensures zero compromise on the overall effectiveness of the program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SIR repository: website, http://sir.unl.edu/portal/index.php/ (Accessed September 15, 2018).

  2. 2.

    The Eclipse Foundation website, http://www.eclipse.org/ (Accessed September 15, 2018).

  3. 3.

    JUnit’s official website, http://www.junit.org/ (Accessed September 15, 2018).

  4. 4.

    http://www.eclipse.org/eclipse/ant/ (Accessed September 15, 2018).

  5. 5.

    EclEmma’s official website, http://www.eclemma.org/ (Accessed September 15, 2018).

  6. 6.

    Jumble home page, http://jumble.sourceforge.net (Accessed September 15, 2018).

References

  1. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a test suite. ACM Trans. Softw. Eng. Methodol 2(3), 270–285 (1993)

    Article  Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Sept (2001)

    MATH  Google Scholar 

  3. Gupta, R.: A reconfigurable LIW architecture and its compiler. Tech. Rep. 87-3, Dept. Computer Science, Univ. Pittsburgh, Pittsburgh, Pa. (1987)

    Google Scholar 

  4. Gupta, R., Soffa, M.L. Compile-time techniques for improving scalar access performance in parallel memories. IEEE Trans. Parallel Distrib. Syst. 2(2), 138–148 (1991)

    Google Scholar 

  5. Jeffrey, D., Gupta, N.: Improving fault detection capability by selectively retaining test cases during test suite reduction. IEEE Trans. Softw. Eng. 33(2), 108–123 (2007)

    Article  Google Scholar 

  6. Lin, J.W., Huang, C.Y.: Analysis of test suite reduction with enhanced tie-breaking techniques. Inf. Softw. Technol. 51(4), 679–690 (2009)

    Article  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company (1979)

    Google Scholar 

  8. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

    Google Scholar 

  9. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  Google Scholar 

  10. Yo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey. Softw. Test. Verif. Reliab. 22(2) (2012)

    Google Scholar 

  11. Chen, T.Y., Lau, M.F.: A new heuristic for test suite reduction. Inf. Softw. Technol. 40(5–6), 347–354 (1998)

    Article  Google Scholar 

  12. Jones, J.A., Harrold, M.J.: Test-suite reduction and prioritization for modified condition/decision coverage. IEEE Trans. Softw. Eng. 29(3), 195–209 (2003)

    Article  Google Scholar 

  13. Lin, C.-T., Tang, K.-W., Chen, C.-D., Kapfhammer, G.M.: Reducing the cost of regression testing by identifying irreplaceable test cases. In: Proceedings of the 6th ICGEC ’12

    Google Scholar 

  14. Ma, X.Y., He, Z.F., Sheng, B.K., Ye, C.Q.: A genetic algorithm for test-suite reduction. In: Proceedings of the International Conference on Systems, Man and Cybernetics, pp. 133–139, Oct 2005

    Google Scholar 

  15. Zhang, Y., Liu, J., Cui, Y., Hei, X.: An improved quantum genetic algorithm for test suite reduction. In: IEEE International Conference on Computer Science and Automation Engineering (CSAE) (2011)

    Google Scholar 

  16. Hao, D., Xie, T., Zhang, L., Wang, X., Sun, J., Mei, H.: Test input reduction for result inspection to facilitate fault localization. Autom. Softw. Eng. 17(1), 5–31(2010) (Springer)

    Google Scholar 

  17. Mohapatra, S.K., Prasad, S., Minimizing test cases to reduce the cost of regression testing. In: IEEE Proceedings of the 8th INDIACom; INDIACom (2014)

    Google Scholar 

  18. Mohapatra, S.K., Prasad, S, Kar, B.P.: Test suit reduction by finding cost optimal representative set. Int. J. Adv. Technol. Eng. Res. (IJATER) 4(3) (2014)

    Google Scholar 

  19. Mohapatra, S.K., Prasad, S.: Evolutionary search algorithm for test case prioritization. In: IEEE International Conference on Machine Intelligence Research and Advancement. 978-0-7695-5013-8/13 (2013)

    Google Scholar 

  20. Chen, T.Y., Lau, M.: A simulation study on some heuristics for test suite reduction. Inf. Softw. Technol. 40(13), 777–787 (1998)

    Article  Google Scholar 

  21. Mansour, N., El-Fakih, K.: Simulated annealing and genetic algorithms for optimal regression testing. J. Softw. Maint. 11(1), 19–34 (1999)

    Article  Google Scholar 

  22. Black, J., Melachrinoudis, E., Kaeli, D.: Bi-criteria models for all-uses test suite reduction. In: Proceedings of 26th International Conference on Software Engineering, pp. 106–115. IEEE Computer Society, Washington, DC, USA (2004)

    Google Scholar 

  23. Yoo, S., Harman, M.: Using hybrid algorithm for pareto efficient multi-objective test suite minimisation. JSS 83(4), 689–701 (2010)

    Google Scholar 

  24. Hao, D., Zhang, L., Wu, X., Mei, H., Rothermel, G.: On-demand test suite reduction. In: ICSE, pp. 738–748 (2012)

    Google Scholar 

  25. Blue, D., Segall, I., Tzoref-Brill, R., Zlotnick, A.: Interaction-based test-suite minimization. In: ICSE, pp. 182–191 (2013)

    Google Scholar 

  26. Zhang, L., Marinov, D., Khurshid, S.: Faster mutation testing inspired by test prioritization and reduction. In: ISSTA, pp. 235–245

    Google Scholar 

  27. Zhong, H., Zhang, L., Mei, H.: An experimental study of four typical test suite reduction techniques. Inf. Softw. Technol. 50(6), 534–546 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar Mohapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohanty, S., Mohapatra, S.K., Meko, S.F. (2020). Ant Colony Optimization (ACO-Min) Algorithm for Test Suite Minimization. In: Das, H., Pattnaik, P., Rautaray, S., Li, KC. (eds) Progress in Computing, Analytics and Networking. Advances in Intelligent Systems and Computing, vol 1119. Springer, Singapore. https://doi.org/10.1007/978-981-15-2414-1_6

Download citation

Publish with us

Policies and ethics