Skip to main content

Phytochemicals as Antidepressants

  • Chapter
  • First Online:
Advances in Pharmaceutical Biotechnology

Abstract

Depression characterized as a mental disorder occupies the fourth position in the list of frequent global brain-related diseases. It is believed to occupy the second position in that list by 2030. Depression has been defined in terms of neurological disorders adversely influencing the physiological activities as well as functions of the brain. The disease manifests in the affected individual in the form of loss of sleep, appetite, attention, thinking, and concentration. Such persons develop a tendency of a feeling of being dejected and stay disappointed. As a result, they imbibe tendencies to suicide. Globally, this disease causes morbidity and mortality. The compounds used to treat depression are called antidepressants. These antidepressants have been shown to be useful in the treatment of pain and anxiety syndromes. Based on the mechanism of their actions, these antidepressants have been placed in five different groups: (i) the antidepressants with tricyclic chemical structure (tricyclic antidepressants – TCAs); (ii) the compounds selectively inhibiting serotonin reuptake (selective serotonin reuptake inhibitors); (iii) the molecules acting as inhibitors of the enzyme, monoamine oxidase (MAOIs); (iv) the chemical agents inhibiting the reuptake of serotonin norepinephrine (SNRIs); and (v) the non-TCA antidepressants. Many of these antidepressants are synthetic in nature and pose harmful effects on the health of users through many ways including generation of oxidative stress, which is responsible for brain dysfunction. In this regard, the phytochemicals and medicinal herbs are believed to offer most viable options because they possess enormous antioxidant potential, easy availability, low cost, least toxicity, and high therapeutic potential. The phytoconstituents have recently been utilized as a complementary therapeutic agent, which may help cure depression and check the recurrence of psychoneurotic disorders. The present chapter illustrates recent advances in research concerning phytochemicals acting as antidepressants. Also, their chemical structures, biological functions, mode of actions, role in regulation of pathophysiology, and toxicity, if any, have been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronson, J. K. (2009). Meyler’s side effects of psychiatric drugs. Amsterdam: Elsevier. ISBN 978-0-444-53266-4.

    Google Scholar 

  • Balasubashini, M. S., Rukkumani, R., Viswanathan, P., & Menon, V. P. (2004). Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytotherapy Research, 18, 310–314.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, S. K., Bhattacharya, A., Kumar, A., & Ghosal, S. (2000). Antioxidant activity of Bacopa monnieri in rat frontal cortex, striatum and hippocampus. Phytotherapy Research, 14, 174–179.

    Article  CAS  PubMed  Google Scholar 

  • Bhutada, P., Mundhada, Y., Bansod, K., Ubgade, A., Quazi, M., Umathe, S., & Mundhada, D. (2010). Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice. Progress in Neuropsychopharmacology and Biological Psychiatry., 34, 955–960.

    Article  CAS  Google Scholar 

  • Bhutani, M. K., Bishnoi, M., & Kulkarni, S. K. (2009). Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacology Biochemistry and Behavior, 92(1), 39–43.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317–333.

    Article  CAS  PubMed  Google Scholar 

  • Bunney, W. E., & Davis, J. M. (1965). Norepinephrine in depressive reactions. Archives of General Psychiatry, 13(6), 483–494.

    Article  CAS  PubMed  Google Scholar 

  • Bunney WE, Davis JM. (1969). Norepinephrine in depressive reactions. Archives of General Psychiatry, 13(6): 483-494.

    Google Scholar 

  • Bunney, W. E., Jr., Murphy, D. L., Brodie, H., Keith, H., & Goodwin, F. K. (1970). Further studies with L-DOPA in depressed patients. Lancet, 1, 352.

    Article  PubMed  Google Scholar 

  • Cervo, L., Rozio, M., Ekalle-Soppo, C. B., Guiso, G., Morazzoni, P., & Caccia, S. (2002). Role of hyperforin in the antidepressant like activity of Hypericum perforatum extracts. Psychopharmacology (Berl), 164, 423–428.

    Article  CAS  Google Scholar 

  • Chen, Q. G., Zeng, Y. S., Qu, Z. Q., et al. (2009). The effects of Rhodiola rosea extract on 5-HT level, cell proliferation and quantity of neurons at cerebral hippocampus of depressive rats. Phytomedicine, 16(9), 830–838.

    Article  CAS  PubMed  Google Scholar 

  • Cui, C., Yang, M., Yao, Z., Cao, B., Luo, Z., Xu, Y., & Chen, Y. (1995). Antidepressant active constituents in the roots of Morinda officinalis How. Zhongguo Zhong Yao Za Zhi, 20, 36–39.

    CAS  PubMed  Google Scholar 

  • DalBĂł, S., JĂĽrgensen, S., Horst, H., Soethe, D. N., Santos, A. R., Pizzolatti, M. G., & Ribeiro-do-Valle, R. M. (2006). Analysis of the antinociceptive effect of the proanthocyanidin-rich fraction obtained from Croton celtidifolius barks: Evidence for a role of the dopaminergic system. Pharmacology, Biochemistry, and Behavior, 85, 317–323.

    Article  CAS  PubMed  Google Scholar 

  • Dar, A., & Khatoon, S. (1997). Antidepressant activities of Areca catechu fruit extract. Phytotherapy Research, 4(1), 41–45.

    CAS  Google Scholar 

  • Doghramji, K. (2003). Treatment strategies for sleep disturbance in patients with depression. J Clinical Psychiatry, 64, 24–29.

    CAS  Google Scholar 

  • Facchini, P. J. (2001). Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation and metabolic engineering. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 29–66.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, M. (2014). Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. Journal of Agricultural and Food Chemistry, 62, 7652–7670.

    Article  CAS  PubMed  Google Scholar 

  • Gillman, P. K. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. British Journal of Pharmacology., 151(6), 737–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Ramirez, M., Kelly, S. P., Montesi, J. L., & Foxe, J. J. (2009). The effects of L-theanine on alpha-band oscillatory brain activity during a visuo-spatial attention task. Brain Topography, 22, 44–51.

    Article  PubMed  Google Scholar 

  • Gupta, V. K., & Sharma, B. (2016). Modulations of mammalian brain functions by antidepressant drugs: Role of some phytochemicals as prospective antidepressants. Evidence Based Medicine and Practice, 1, 1–12.

    Google Scholar 

  • Hidese, S., Ota, M., Wakabayashi, C., Noda, T., Ozawa, H., Okubo, T., & Kunugi, H. (2017). Effects of chronic l-theanine administration in patients with major depressive disorder: An open-label study. Acta Neuropsychiatrica, 29, 72–79.

    Article  PubMed  Google Scholar 

  • Holstein, S. A., & Hohl, R. J. (2004). Isoprenoids: Remarkable diversity of form and function. Lipids, 34, 293–309.

    Article  Google Scholar 

  • Hotta, M., Nakata, R., Katsukawa, M., Hori, K., Takahashi, S., & Inoue, H. (2010). Carvacrol, a component of thyme oil, activates PPARÇ–FC; and Ç–FE; and suppresses COX-2 expression. Journal of Lipid Research, 51, 132–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iriti, M., & Faoro, F. (2004). Plant defense and human nutrition: The phenylpropanoids on the menu. Current Topics in Nutraceutical Research, 2, 47–65.

    CAS  Google Scholar 

  • Kakuda, T., Nozawa, A., Sugimoto, A., & Niino, H. (2002). Inhibition by theanine of binding of [3H] AMPA, [3H] kainate, and [3H] MDL 105, 519 to glutamate receptors. Bioscience, Biotechnologyand Biochemistry, 66, 2683–2686.

    Article  CAS  Google Scholar 

  • Kawabata, K., Yamamoto, T., Hara, A., Shimizu, M., Yamada, Y., Matsunaga, K., Tanaka, T., & Mori, H. (2000). Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Letters, 157, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Keller, M. B., Lavori, P. W., Rice, J., Coryell, W., & Hirschfeld, R. M. (1986). The persistent risk of chronicity in recurrent episodes of non bipolar major depressive disorder: A prospective follow-up. The American Journal of Psychiatry, 143, 24–28.

    Article  CAS  PubMed  Google Scholar 

  • Khushboo, & Sharma, B. (2017). Antidepressants: Mechanism of action, toxicity and possible amelioration. Journal of Applied Biomaterials & Biomechanics, 3, 82.

    Google Scholar 

  • Kim, H. J., Moon, K. D., Oh, S. Y., Kim, S. P., & Lee, S. R. (2001). Ether fraction of methanol extracts of Gastrodia elata, A traditional medicinal herb, protects against kainic acid-induced neuronal damage in the mouse hippocampus. Neuroscience Letter, 365, 65.

    Article  Google Scholar 

  • Kulkarni, S. K., & Dhir, A. (2008). On the mechanism of antidepressant-like action of berberine chloride. European Journal of Pharmacology, 589(1–3), 163–172.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Naidu, P. S., Seghal, N., & Padi, S. S. V. (2007). Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress, in rats. Pharmacology, 79, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Lemieux, G., Davignon, H., & Genest, J. (1956). Depressive states during Rauwolfia therapy for arterial hypertension. Canadian Medical Association Journal, 74, 522.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leventhal, A. M., & Rehm, L. P. (2005). The empirical status of melancholia: Implications for psychology. Clinical Psychology Review, 25(1), 25–44.

    Article  PubMed  Google Scholar 

  • Lindert, J., Ehrenstein, O. S., Grashow, R., Gal, G., Braehler, E., & Weisskopf, M. G. (2014). Sexual and physical abuse in childhood is associated with depression and anxiety over the life course: Systematic review and meta-analysis. International Journal of Public Health, 59, 359–372.

    Article  PubMed  Google Scholar 

  • Li, Y. C., Wang, F. M., Pan, Y., Qiang, L. Q., Cheng, G., Zhang, W. Y., & Kong, L. D. (2009). Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(3), 435–449.

    Article  CAS  Google Scholar 

  • Lu, K., Gray, M. A., & Oliver, C. (2004). The acute effects of L-theanine in comparison with alprazolam on anticipatory anxiety in humans. Human Psychopharmacology, 19, 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Manach, C., Scalbert, A., Morand, C., RĂ©mĂ©sy, C., & JimĂ©nez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79, 727–747.

    Article  CAS  PubMed  Google Scholar 

  • Mazzio, E. A., Harris, N., & Soliman, K. F. (1998). Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Medica, 64(7), 603–606.

    Article  CAS  PubMed  Google Scholar 

  • Mcclure, D. J., & June, M. D. (1971). Biochemistry of depression. Canadian Psychiatric Association Journal, 16, 247–252.

    Article  CAS  PubMed  Google Scholar 

  • Medford, N. (2005). Understanding and treating depersonalization disorder. Advances in Psychiatric Treatment, 11(2), 92–100.

    Article  Google Scholar 

  • Melo, F. H., Moura, B. A., de Sousa, D. P., Vasconcelos, S. M., Macedo, D. S., Fonteles, M. M., Viana, G. S., & Sousa, F. C. (2011). Antidepressant like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: Involvement of dopaminergic system. Fundamental and Clinical Pharmacology, 25, 362–367.

    Article  CAS  PubMed  Google Scholar 

  • Moutsatso, P. (2007). The spectrum of phytoestrogens in nature: Our knowledge is expanding. Hormones, 6, 173–193.

    Google Scholar 

  • Moussa, B. H., & Youdim, P. F. R. (2004). A review of the mechanisms and role of monoamine oxidase inhibitors in Parkinson’s disease. Neurology, 63(Issue 7, Supplement 2), S32–S35.

    Google Scholar 

  • Mu, W., Zhang, T., & Jiang, B. (2015). An overview of biological production of L-theanine. Biotechnology Advances, 33(3-4), 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269, 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Naples, J. G., Kotlarczyk, M. P., Perera, S., Greenspan, S. L., & Hanlon, J. T. (2016). Non-tricyclic/non-selective serotonin reuptake inhibitor antidepressants and recurrent falls in frail older women. American Journal of Geriatric Psychiatry, 24(12), 1221–1227. https://doi.org/10.1016/j.jagp.2016.08.008.

    Article  Google Scholar 

  • Nathan, P. J., Lu, K., Gray, M., & Oliver, C. (2006). The neuropharmacology of L-theanine (N-ethyl-L-glutamine): A possible neuroprotective and cognitive enhancing agent. Journal of Herbal Pharmacotherapy, 6, 21–30.

    CAS  PubMed  Google Scholar 

  • Office of Population Censuses and Surveys. Social Survey Division. (1994). OPCS omnibus survey, December 1990. [data collection]. UK Data Service.SN, 3071. https://doi.org/10.5255/UKDA-SN-3071-1.

  • Parikh, T., Goyal, D., Makani, R., & Cagande, C. C. (2017). Serotonin Norepinephrine Reuptake Inhibitors (SNRI), Selective Serotonin Reuptake Inhibitors (SSRI), Breastfeeding, and Concerns for Infant Safety. Child and Adolescent Psychiatry, 56(10: Supplement), S274.

    Article  Google Scholar 

  • Park, S. Y., & Kim, D. S. (2002). Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: A drug discovery effort against Alzheimer’s disease. Journal of Natural Products, 65, 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  • Partonen, T., & Lönnqvist, J. (1998). Seasonal affective disorder. Lancet, 352, 1369–1374.

    Article  CAS  PubMed  Google Scholar 

  • Pillemer, K., Suitor, J. J., Pardo, S., & Henderson, C. (2010). Mothers’ differentiation and depressive symptoms among adult children. Journal of Marriage and Family, 72, 333–345.

    Article  PubMed  Google Scholar 

  • Preuss, H. G., Wallerstedt, D., Talpur, N., et al. (2000). Effects of niacin bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects: A pilot study. Journal of Medicine, 31(5–6), 227–246.

    CAS  PubMed  Google Scholar 

  • Ranney, A., & Petro, M. S. (2009). Resveratrol protects spatial learning in middle-aged C57BL/6 mice from effects of ethanol. Behavioural Pharmacology, 20, 330–336.

    Article  CAS  PubMed  Google Scholar 

  • Rashid, T., & Heider, I. (2008). Life events and depression. Annals of Punjab Medical College, 2, 9.

    Google Scholar 

  • Reed, R. L. (2017). In L. J. De Groot, G. Chrousos, K. Dungan, et al. (Eds.), Endotext,. PMID: 25905274. MDText.com, Inc., USA: South Dartmouth (MA).

    Google Scholar 

  • Russo, G. L., Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., Iannitti, R., & Palumbo, R. (2014). Quercetin: A pleiotropic kinase inhibitor against cancer. Cancer Treatment and Research, 159, 185–205.

    Article  CAS  PubMed  Google Scholar 

  • Salmans, S. (1995). Depression: Questions you have-answers you need. People’s Medical Society Paperback, 1, 190.

    Google Scholar 

  • Saper, C. B., & Lowell, B. B. (2014). The hypothalamus. Current Biology, 24, 1111–1116.

    Article  CAS  Google Scholar 

  • Sato, M., Bagchi, D., Tosaki, A., & Das, D. K. (2001). Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and CJUN. Free Radical Biology and Medicine, 31(6), 729–737.

    Article  CAS  PubMed  Google Scholar 

  • Scalbert, A., Manach, C., Morand, C., RĂ©mĂ©sy, C., & JimĂ©nez, L. (2004). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287–306.

    Article  CAS  Google Scholar 

  • Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: A review of the evidence. American Journal of Psychiatrics, 122, 509–522.

    Article  CAS  Google Scholar 

  • Schmidt, P. J. (2005). Mood, depression, and reproductive hormones in the menopausal transition. American journal of Medicine, 118, 54–58.

    Google Scholar 

  • Singh, H. K., & Dhawan, B. N. (1997). Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monnieri Linn. (Brahmi). Indian Journal of Pharmacology, 29, 359–365.

    Google Scholar 

  • Srinivasan, M., Sudheer, A. R., & Menon, V. P. (2007). Ferulic acid: Therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition, 40, 92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultana, R., Ravagna, A., Mohmmad-Abdul, H., Calabrese, V., & Butterfield, D. A. (2005). Ferulic acid ethyl ester protects neurons against amyloid đť›˝-peptide (1–42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. Journal of Neurochemistry, 92, 749–758.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, H., Tsuji, M., Matsumiya, T., & Kubo, M. (2002). Identification of rosmarinic acid as a novel antidepressive substance in the leaves of Perilla frutescens Britton var. acuta Kudo (Perillae Herba). Japanese Journal of Neuropsychopharmacology, 22, 15–22.

    CAS  PubMed  Google Scholar 

  • Thomas, G., Selak, M., & Henson, P. M. (1999). Effects of the aqueous fraction of the ethanol extract of the leaves of Cissampelos sympodialis Eichl. in human neutrophils. Phytotherapy Research, 13, 9–13.

    Article  CAS  PubMed  Google Scholar 

  • Tredici, G., Miloso, M., Nicolini, G., Galbiati, S., Cavaletti, G., & Bertelli, A. (1999). Resveratrol, MAP kinases and neuronal cells: Might wine be a neuroprotectant? Drugs under Experimental and Clinical Research, 25, 99–103.

    CAS  PubMed  Google Scholar 

  • Uchida, S., Hirai, K., Hatanaka, J., Hanato, J., Umegaki, K., & Yamada, S. (2008). Antinociceptive effects of St. John’s wort, Harpagophytum procumbens extract and grape seed proanthocyanidins extract in mice. Biological and Pharmaceutical Bulletin, 31(2), 240–245.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Xu, Y., Wu, H.-L., Li, Y.-B., Li, Y.-H., Guo, J.-B., & Li, X.-J. (2008). The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. European Journal of Pharmacology, 578(1), 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Delling, M., Jun, J. C., & Clapham, D. E. (2006). Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neuroscience, 9, 628–635.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Ku, B.-S., Yao, H.-Y., et al. (2005). Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacology Biochemistry and Behavior, 82(1), 200–206.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Ku, B., Cui, L., et al. (2007). Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Research, 1162(1), 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Wang, Z., You, W., Zhang, X., Li, S., Barish, P. A., Vernon, M. M., Du, X., Li, G., Pan, J., & Ogle, W. O. (2010). Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. European Neuropsychopharmacology, 20, 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Yabe, T., Hirahara, H., Harada, N., Ito, N., Nagai, T., Sanagi, T., & Yamada, H. (2010). Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience, 165, 515–524.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J. J., Cho, J. Y., Kim, H. S., Kim, K. L., Jung, J. S., Huh, S. O., Suh, H. W., Kim, Y. H., & Song, D. K. (2001). Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. British Journal of Pharmacology, 133, 89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yáñez, M., Fraiz, N., Cano, E., & Orallo, F. (2006). Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochemical and Biophysical Research Communications, 344, 688–695.

    Article  CAS  PubMed  Google Scholar 

  • Yin, C., Gou, L., Liu, Y., Yin, X., Zhang, L., Jia, G., & Zhuang, X. (2011). Antidepressant-like effects of L-theanine in the forced swim and tail suspension tests in mice. Phytotherapy Research., 25, 1636–1639.

    Article  CAS  PubMed  Google Scholar 

  • Yogeeta, S. K., Hanumantra, R. B., Gnanapragasam, A., Senthilkumar, S., Subhashini, R., & Devaki, T. (2006). Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: Beneficial effect of ferulic acid and ascorbic acid. Basic and Clinical Pharmacology and Toxicology, 98, 467–472.

    Article  CAS  PubMed  Google Scholar 

  • Zotti, M., Colaianna, M., Morgese, M. G., Tucci, P., Schiavone, S., Avato, P., & Trabace, L. (2013). Carvacrol: From ancient flavoring to neuromodulatory agent. Molecules, 18, 6161–6172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Khushboo and AK are grateful to UGC–New Delhi and UGC–CSIR–New Delhi, respectively, for providing financial support in the form of a research fellowship and to the DST–FIST–New Delhi as well as UGC–SAP–New Delhi for providing research facilities at the Department of Biochemistry of University of Allahabad, UP, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khushboo, Kumar, A., Sharma, B. (2020). Phytochemicals as Antidepressants. In: Patra, J., Shukla, A., Das, G. (eds) Advances in Pharmaceutical Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2195-9_10

Download citation

Publish with us

Policies and ethics