Skip to main content

Overview of Machine Learning Methods in ADHD Prediction

  • Chapter
  • First Online:
Advances in Bioengineering

Abstract

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects the social and personal traits of children between the age of 2 and 18, and the symptoms include inattentiveness and hyperactivity/impulsivity. Though this disorder is identified in childhood, it may persist till teenage in a few cases. ADHD is diagnosed on the basis of various rating scales that have been developed by experts. Additionally, MRI patterns are also used to study the anatomical and functional features of ADHD brain and the effect of medication. This chapter focuses on various machine learning models developed for accurate prediction of this disorder. Majority of machine learning studies were based on creating classification models, out of which SVM and ANN have been proved to give the most accurate diagnosis. A better predictive model with good correlation coefficient (CC) values, specificity and sensitivity has been generated with genetic programming-based algorithm. Numerous other relevant examples have also been cited in this chapter. The contents of the chapter will help the researchers to understand various techniques of ADHD prediction to provide better treatment for the children who are suffering from similar neurodevelopmental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akdeniz G (2017) Complexity analysis of resting-state fMRI in adult patients with attention deficit hyperactivity disorder: brain entropy. Comput Intell Neurosci 2017:3091815

    Article  PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, Arlington

    Book  Google Scholar 

  • Azar AT, Elshazly HI, Hassanien AE et al (2014) A random forest classifier for lymph diseases. Comput Methods Prog Biomed 113(2):465–473

    Article  Google Scholar 

  • Banzhaf W, Francone FD, Keller RE et al (1998) Genetic programming: an introduction: on the automatic evolution of computer programs and its applications. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  • Barkley RA (2015) Attention-deficit hyperactivity disorder: a handbook for diagnosis and treatment. The Guilford Press, New York

    Google Scholar 

  • Bhardwaj A, Tiwari A, Krishna R et al (2016) A novel genetic programming approach for epileptic seizure detection. Comput Methods Prog Biomed 124:2–18

    Article  Google Scholar 

  • Bledsoe JC, Xiao D, Chaovalitwongse A et al (2016) Diagnostic classification of ADHD versus control: support vector machine classification using brief neuropsychological assessment. J Atten Disord. https://doi.org/10.1177/1087054716649666

  • Bohland JW, Saperstein S, Pereira F et al (2012) Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual subjects. Front Syst Neurosci 6:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Borsook D, Upadhyay J, Klimas M et al (2012) Decision-making using fMRI in clinical drug development: revisiting NK-1 receptor antagonists for pain. Drug Discov Today 17(17–18):964–973

    Article  CAS  PubMed  Google Scholar 

  • Bouchard MF, Bellinger DC, Wright RO et al (2010) Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics 125(6):1270–1277

    Article  Google Scholar 

  • Bowers TG, Risser MG, Suchanec JF et al (1992) A developmental index using the Wechsler intelligence scale for children: implications for the diagnosis. J Learn Disabil 25:179–185

    Article  CAS  PubMed  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Brown T (1996) The Brown ADD scales. Psychological Corp, San Antonio

    Google Scholar 

  • Chae S, Kwon S, Lee D (2018) Predicting infectious disease using deep learning and big data. Int J Environ Res Public Health 15(8):pii: E1596

    Article  Google Scholar 

  • Chaurasia V, Pal S (2013) Early prediction of heart diseases using data mining techniques. Carib J Sci Technol 1:208–217

    Google Scholar 

  • Chen M, Hao Y, Hwang K et al (2017) Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5:8869–8879

    Article  Google Scholar 

  • Chu K-C, Huang H-J, Huang Y-S (2016) Machine learning approach for distinction of ADHD and OSA. IEEE/ACM International conference on advances in social networks analysis and mining (ASONAM), IEEE, pp 1044–1049

    Google Scholar 

  • Conners CK (2008) Conners third edition (Conners 3). Western Psychological Services, Los Angeles

    Google Scholar 

  • Conners CK, Pitkanen J, Rzepa SR (2011) Conners 3rd edition (Conners 3; Conners 2008). In: Kreutzer JS, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology. Springer, New York, pp 675–678

    Chapter  Google Scholar 

  • Constantino JN, Gruber CP (2012) Social responsiveness scale-second edition (SRS-2). Western Psychological Services, Torrance

    Google Scholar 

  • Cortese S, Kelly C, Chabernaud C et al (2012) Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry 169(10):1036–1055

    Article  Google Scholar 

  • Deshpande G, Wang P, D R et al (2015) Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans Cybern 45(12):2668–2679

    Article  PubMed  Google Scholar 

  • Division of Human Development and Disability (2018) Data and statistics about ADHD. Centers for Disease Control and Prevention. https://www.cdc.gov/ncbddd/adhd/data.html. Accessed 13 Jan 2019

  • Duda M, Haber N, Daniels J et al (2017) Crowd sourced validation of a machine-learning classification system for autism and ADHD. Transl Psychiatry 7(5):e1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuPaul GJ, Power TJ, Anastopoulos AD et al (2016) ADHD rating scale? 5 for children and adolescents: checklists, norms, and clinical interpretation. Guilford Publications, New York

    Google Scholar 

  • Farré-Riba A, Narbonne J (1997) Conner’s rating scales in the assessment of attention deficit disorder with hyperactivity (ADD-H). A new validation and factor analysis in Spanish children. Rev Neurol 25(138):200–204

    PubMed  Google Scholar 

  • Fatima M, Pasha M (2017) Survey of machine learning algorithms for disease diagnostic. J Intell Learn Syst Appl 9(1):1–16

    Google Scholar 

  • Frandsen AJ (2016) Machine learning for disease prediction. Master of Science, Brigham Young University

    Google Scholar 

  • Glover GH (2011) Overview of functional magnetic resonance imaging. Neurosurg Clin N Am 22(2):133–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez R, Vance A, Watson SD (2016) Structure of the Wechsler intelligence scale for children – fourth edition in a Group of Children with ADHD. Front Psychol 7:737

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorunescu F (2011) Classification and decision trees. In: Data mining: concepts, models and techniques. Springer, Berlin/Heidelberg, pp 159–183

    Chapter  Google Scholar 

  • Grane VA, Endestad T, Pinto AF et al (2014) Attentional control and subjective executive function in treatment-naive adults with attention deficit hyperactivity disorder. PLoS One 9(12):e115227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green M, Wong M, Atkins D et al (1999) Diagnosis of attention-deficit/hyperactivity disorder. Technical Reviews No. 3

    Google Scholar 

  • Hao AJ, He BL, Yin CH (2015) Discrimination of ADHD children based on deep Bayesian network. In: International conference on biomedical image and signal processing (ICBISP 2015), IET, pp 1–6

    Google Scholar 

  • Hart H, Chantiluke K, Cubillo AI et al (2014) Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD. Hum Brain Mapp 35(7):3083–3094

    Article  PubMed  Google Scholar 

  • Herland M, Khoshgoftaar TM, Wald R (2014) A review of data mining using big data in health informatics. J Big Data 1(1):2

    Article  Google Scholar 

  • H.R. Jahanshahloo, M. Shamsi, E. Ghasemi, et al (2017) Automated and ERP-based diagnosis of attention-deficit hyperactivity disorder in children. J Med Signals Sensors 7: 26–32

    Google Scholar 

  • Jain A (2015) Machine learning techniques for medical diagnosis: a review. 2nd international conference on science, technology and management, University of Delhi, New Delhi, pp 2449–2459

    Google Scholar 

  • Jain R, Jain N, Aggarwal A et al (2019) Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cogn Syst Res 57:147–159

    Article  Google Scholar 

  • Jie B, Wee CY, Shen D et al (2016) Hyper-connectivity of functional networks for brain disease diagnosis. Med Image Anal 32:84–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Kao GS, Thomas HM (2010) Test review: C. Keith Conners Conners 3rd edition Toronto, Ontario, Canada: multi-health systems, 2008. J Psychoeduc Assess 28(6):598–602

    Article  Google Scholar 

  • Katusic MZ, Voigt RG, Colligan RC et al (2011) Attention-deficit hyperactivity disorder in children with high intelligence quotient: results from a population-based study. J Dev Behav Pediatr 32(2):103–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler RC, Green JG, Adler LA et al (2010) Structure and diagnosis of adult attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 67(11):1168–1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J-W, Park K-H, Cheon K-A et al (2005) The child behavior checklist together with the ADHD rating scale can diagnose ADHD in Korean community-based samples. Can J Psychiatr 50(12):802–805

    Article  Google Scholar 

  • Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23:89–109

    Article  CAS  PubMed  Google Scholar 

  • Kotsiantis SB (2011) Decision trees: a recent overview. Artif Intell Rev 39(4):261–283

    Article  Google Scholar 

  • Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4(2):87–112

    Article  Google Scholar 

  • Kuang D, He L (2014) Classification on ADHD with deep. Learning 2014:27–32

    Google Scholar 

  • Kubo Y, Kanazawa T, Kawabata Y et al (2018) Comparative analysis of the WISC between two ADHD subgroups. Psychiatry Investig 15(2):172–177

    Article  PubMed  Google Scholar 

  • Kyeong S, Park S, Cheon KA et al (2015) A new approach to investigate the association between brain functional connectivity and disease characteristics of attention-deficit/hyperactivity disorder: topological neuroimaging data analysis. PLoS One 10(9):e0137296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • L’Heureux A, Grolinger K, Elyamany HF et al (2017) Machine learning with big data: challenges and approaches. IEEE Access 5:7776–7797

    Article  Google Scholar 

  • Lacy SE, Lones MA, Smith SL (2013) Characterisation of movement disorder in Parkinson’s disease using evolutionary algorithms. In: 2013 genetic and evolutionary computation conference (GECCO), Amsterdam, The Netherlands, ACM Digital Library, pp 1479–1485

    Google Scholar 

  • Lange KW, Reichl S, Lange KM et al (2010) The history of attention deficit hyperactivity disorder. Atten Defic Hyperact Disord 2:241–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang S-F, Hsieh T-H, Chen P-T, et al (2012) Differentiation between resting-state fMRI data from ADHD and normal subjects: based on functional connectivity and machine learning. In: 2012 international conference on fuzzy theory and its applications, National Chung Hsing University, Taichung, Taiwan, IEEE

    Google Scholar 

  • Mantzaris DH, Anastassopoulos GC, Lymberopoulos DK (2008) Medical disease prediction using artificial neural networks. In: 8th IEEE international conference on bioinformatics and bioengineering, Greece, IEEE, pp 1–6

    Google Scholar 

  • McKee ML, Mortimer JE, Maricle DE et al (2011a) Barkley home situations questionnaire. In: Encyclopedia of child behavior and development, vol 1. Springer, New York, pp 204–205

    Google Scholar 

  • McKee ML, Mortimer JE, Maricle DE et al (2011b) Barkley school situations questionnaire. In: Encyclopedia of child behavior and development. Springer, New York, pp 205–206

    Google Scholar 

  • McNeil (2002) NICHQ vanderbilt assessment scales. National Institute for Children’s Health Quality. https://www.nichq.org/resource/nichq-vanderbilt-assessment-scales. Accessed 23 Jan 2019

  • Milham MP, Fair D, Mennes M et al (2012) The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 6:62

    Google Scholar 

  • Moetesum M, Siddiqi I, Vincent N et al (2019) Assessing visual attributes of handwriting for prediction of neurological disorders—a case study on Parkinson’s disease. Pattern Recogn Lett 121:19–27

    Article  Google Scholar 

  • Mohammadi MR, Khaleghi A, Nasrabadi AM et al (2016) EEG classification of ADHD and normal children using non-linear features and neural network. Biomed Eng Lett 6(2):66–73

    Article  Google Scholar 

  • Mueller A, Candrian G, Kropotov JD et al (2010) Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys 4(Suppl 1):S1

    Article  PubMed  PubMed Central  Google Scholar 

  • Öztoprak H, Toycan M, Alp YK et al (2017) Machine-based learning system: classification of ADHD and non-ADHD participants. In: 25th signal processing and communications applications conference (SIU), Antalya, Turkey, IEEE

    Google Scholar 

  • Parikh KS, Shah TP (2016) Support vector machine – a large margin classifier to diagnose skin illnesses. Procedia Technol 23:369–375

    Article  Google Scholar 

  • Peng X, Lin P, Zhang T et al (2013) Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS One 8(11):1–12

    Google Scholar 

  • Polat H, Danaei Mehr H, Cetin A (2017) Diagnosis of chronic kidney disease based on support vector machine by feature selection methods. J Med Syst 41(4):55

    Article  PubMed  Google Scholar 

  • Qiu J, Wu Q, Ding G et al (2016) A survey of machine learning for big data processing. EURASIP J Adv Signal Process 2016(67):1–16

    Google Scholar 

  • Qureshi MNI, Jo HJ, Lee B (2017) ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: resting-state fMRI study. IEEE international symposium on biomedical imaging: from nano to macro, IEEE

    Google Scholar 

  • Radhamani E, Krishnaveni K (2016) Diagnosis and evaluation of ADHD using MLP and SVM classifiers. Indian J Sci Technol 9(19):1–7

    Google Scholar 

  • Raman SR, Man KKC, Bahmanyar S et al (2018) Trends in attention-deficit hyperactivity disorder medication use: a retrospective observational study using population-based databases. Lancet Psychiatry 5(10):824–835

    Article  PubMed  Google Scholar 

  • Ramírez J, Chaves R., Górriz JM, et al (2009) Computer aided diagnosis of the Alzheimer’s disease combining SPECT-based feature selection and random forest classifier. In: IEEE nuclear science symposium conference record, IEEE

    Google Scholar 

  • Rokach L, Maimon O (2005) Decision trees. In: Data mining and knowledge discovery handbook. Springer, Boston, pp 165–192

    Chapter  Google Scholar 

  • Sagar P, Prinima, Indu (2017) Analysis of prediction techniques based on classification and regression. Int J Comput Appl 163(7):47–51

    Google Scholar 

  • Sandoval J, Echandia A (1994) Behavior assessment system for children. J Sch Psychol 32(4):419–425

    Article  Google Scholar 

  • Sheeran M, Steele R (2017) A framework for big data technology in health and healthcare. In: 2017 IEEE 8th annual ubiquitous computing, electronics and mobile communication conference (UEMCON), IEEE, pp 401–407

    Google Scholar 

  • Shmilovici A (2005) Support vector machines. In: Data mining and knowledge discovery handbook. Springer, Boston, pp 257–276

    Chapter  Google Scholar 

  • Sims DM, Lonigan CJ (2012) Multi-method assessment of ADHD characteristics in preschool children: relations between measures. Early Child Res Q 27(2):329–337

    Article  PubMed  Google Scholar 

  • Siuly S, Zhang Y (2016) Medical big data: neurological diseases diagnosis through medical data analysis. Data Sci Eng 1(2):54–64

    Article  Google Scholar 

  • Smith SL, Gaughan P, Halliday DM et al (2007) Diagnosis of Parkinson’s disease using evolutionary algorithms. Genet Program Evolvable Mach 8(4):433–447

    Article  Google Scholar 

  • Talathi SS (2017) Deep recurrent neural networks for seizure detection and early seizure detection systems. arXiv preprint arXiv:1706.03283

    Google Scholar 

  • Tanner L, Schreiber M, Low JG et al (2008) Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis 2(3):e196

    Article  PubMed  PubMed Central  Google Scholar 

  • Taurines R, Schwenck C, Westerwald E et al (2012) ADHD and autism: differential diagnosis or overlapping traits? A selective review. Atten Defic Hyperact Disord 4(3):115–139

    Article  PubMed  Google Scholar 

  • Tejeswinee K, Shomona GJ, Athilakshmi R (2017) Feature selection techniques for prediction of neuro-degenerative disorders: a case-study with Alzheimer’s and Parkinson’s disease. In: 7th international conference on advances in computing & communications, Cochin, India, Elsevier, pp 188–194

    Google Scholar 

  • van der Meer D, Hoekstra PJ, van Donkelaar M et al (2017) Predicting attention-deficit/hyperactivity disorder severity from psychosocial stress and stress-response genes: a random forest regression approach. Transl Psychiatry 7(6):e1145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vyas R, Goel P, Tambe SS (2015) Genetic programming applications in chemical sciences and engineering. In: Handbook of genetic programming applications. Springer, Cham, pp 99–140

    Chapter  Google Scholar 

  • Vyas R, Bapat S, Goel P et al (2018) Application of genetic programming (GP) formalism for building disease predictive models from protein-protein interactions (PPI) data. IEEE/ACM Trans Comput Biol Bioinform 15(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Wahyunggoro O, Permanasari AE, Chamsudin A (2013) Utilization of neural network for disease forecasting. In: 59th ISI world statistics congress, pp 49–554

    Google Scholar 

  • Wang J (2017) Functional connectivity analysis of resting-state fMRI data in ADHD study, University of Alberta

    Google Scholar 

  • Wang X-H, Jiao Y, Li L (2018) Identifying individuals with attention deficit hyperactivity disorder based on temporal variability of dynamic functional connectivity. Sci Rep 8(1):11789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wechsler D (1991) Wechsler Intelligence Scale for Children, (WISC-III): Manual, 3rd edn. The Psychological Corporation, San Antonio

    Google Scholar 

  • Weng C-H, Huang TC-K, Han R-P (2016) Disease prediction with different types of neural network classifiers. Telematics Inform 33(2):277–292

    Article  Google Scholar 

  • Werner JC, Fogarty TC (2001) Genetic programming applied to collagen disease thrombosis. PKDD 2001 challenge on thrombosis data, Germany/Freiburg

    Google Scholar 

  • Weyandt L, Swentosky A, Gudmundsdottir BG (2013) Neuroimaging and ADHD: fMRI, PET, DTI findings, and methodological limitations. Dev Neuropsychol 38(4):211–225

    Article  PubMed  Google Scholar 

  • Wise RG, Tracey I (2006) The role of fMRI in drug discovery. J Magn Reson Imaging 23(6):862–876

    Article  PubMed  Google Scholar 

  • Worzel WP, Yu J, Almal AA et al (2009) Applications of genetic programming in cancer research. Int J Biochem Cell Biol 41(2):405–413

    Article  CAS  PubMed  Google Scholar 

  • Wu CC, Yeh WC, Hsu WD et al (2019) Prediction of fatty liver disease using machine learning algorithms. Comput Methods Prog Biomed 170:23–29

    Article  Google Scholar 

  • Yahyaoui A, YumuÅŸak N (2018) Decision support system based on the support vector machines and the adaptive support vector machines algorithm for solving chest disease diagnosis problems. Biomed Res 29(7):1474–1480

    Article  Google Scholar 

  • Yasumura A, Omori M, Fukuda A et al (2017) Applied machine learning method to predict children with ADHD using prefrontal cortex activity: a multicenter study in Japan. J Atten Disord. https://doi.org/10.1177/1087054717740632

  • Zhang J, Xu J, Hu X et al (2017) Diagnostic method of diabetes based on support vector machine and tongue images. Biomed Res Int 2017:7961494

    PubMed  PubMed Central  Google Scholar 

  • Zou L, Zheng J, Miao C et al (2017) 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access 5:23626–23636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Vyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sethu, N., Vyas, R. (2020). Overview of Machine Learning Methods in ADHD Prediction. In: Vyas, R. (eds) Advances in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2063-1_3

Download citation

Publish with us

Policies and ethics