Skip to main content

Microbial Diversity in North Western Himalayan Agroecosystems: Functions and Applications

  • Chapter
  • First Online:
Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

North Western Himalayan region is home to varied ecosystems ranging from completely snow-covered mountain slopes, alpine meadows, dense forests, and agricultural terraces across altitudinal gradients. The pristine habitats of Himalayan region have been the hotspot for the exploration of microbial diversity. Both classical and molecular approaches have been utilized in biodiversity studies. Lately metagenomic analysis based on next-generation sequencing has become common to estimate the abundance and diversity of both bacteria and fungi. Further, 16S rDNA sequencing-based metagenome analysis help in determining the taxonomic composition of resident microbial community. Microbial communities of mountain ecosystems are unique and diverse. The microbial community structure in this region is governed by various factors including temperature and altitudinal gradients, climate change, soil characteristics, and plant species diversity. Forests and agriculture are primary livelihood source in Himalayas, so investigation of microbes in these niches becomes important. Acidobacteria, Actinobacteria, and Proteobacteria are dominant phyla in high-altitude cold Himalayan desert soil while Firmicutes and Bacteroidetes at lower altitude. In contrast, Firmicutes followed by Proteobacteria dominated hot springs, while Acidobacteria is followed by Actinobacteria alpine meadows. Considering that microbes are inherent component of mountain agroecosystems that are faced with constraints such as remoteness and inaccessibility, marginality, and fragility in terms of moisture stress and the poor soil conditions and a short growing season. Therefore, a comprehensive approach with emphasis on microbial component is required as a long-term strategy for agriculture sustainability in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MA, Chandrasekharam D, Minssale A (2004) Geothermal potential of thermal waters of Manikaran, Himachal Pradesh, India. In: 11th water-rock symposium Saratoga Springs, New York, 27th June–2nd July 2004

    Google Scholar 

  • Andrabi JA (2018) A spatio-temporal analysis of sex-ratio in districts of Jammu and Kashmir, India. Budapest International Research and Critics Institute (BIRCI-Journal): Humanit Soc Sci 1(3):183–191

    Google Scholar 

  • Anonymous (2019) Annual action plan, Department of Agriculture. Government of Himachal Pradesh

    Google Scholar 

  • Anthwal A, Gupta N, Sharma A, Anthwal S, Kim KH (2010) Conserving biodiversity through traditional beliefs in sacred groves in Uttarakhand Himalaya, India. Resour Conserv Recycl 54(11):962–971

    Article  Google Scholar 

  • Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove a review. Biocatal Agric Biotechnol 3(2):97–110

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Climatic Change 59:5–31

    Google Scholar 

  • Benítez-Páez A, Sanz Y (2017) Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinIONâ„¢ portable nanopore sequencer. Gigascience 6(7):gix043

    Article  CAS  Google Scholar 

  • Bhardwaj KN, Tiwari SC, Bahuguna YM (2010) Screening of thermophilic cyanobacteria isolated from Tapoban geothermal field, Uttarakhand Himalaya for the production of antibacterial compounds. Asian J Exp Biol Sci 1(4):787–791

    Google Scholar 

  • Bhardwaj KN, Tiwari SC, Pandey A (2011) Conservation of thermophilic cyanobacterial diversity and physicochemical characteristics of thermal springs of Tapoban geothermal field, Himalayan province (India). Natl Acad Sci Lett 34(3; 4):77–82

    Google Scholar 

  • Bhati JP, Zingel WP (1997) Natural resource use pattern in Western Himalayan agriculture: implications for biodiversity conservation and sustainable development. In: Conservation and economic evaluation of biodiversity, vol 2. pp 575–588

    Google Scholar 

  • Bisht IS, Rao KS, Bhandari DC, Nautiyal S, Maikhuri RK, Dhillon BS (2006) A suitable site for in situ (on-farm) management of plant diversity in traditional agroecosystems of western Himalaya in Uttaranchal state: a case study. Genet Resour Crop Evol 53(7):1333–1350

    Article  Google Scholar 

  • Brussaard L, De Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121(3):233–244

    Article  Google Scholar 

  • Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountain slides: contrasting elevation pattern of bacterial and plant diversity. PNAS 105:11505–11511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalan J, Camarero L, Felip M, Pla S, Ventura M, Buchaca T, Medina-Sánchez JM (2006) High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25(1–2):551–584

    Google Scholar 

  • Champion SH, Seth SK (1968) A revised survey of the forest types of India. Govt. Publication, New Delhi 

    Google Scholar 

  • Chandel BS, Malhotra R (2006) Livestock systems and their performance in poor endowment regions of India. Agric Econ Res Rev 19:311–326

    Google Scholar 

  • Chandrasekharam D (2000) Geothermal energy resources of India. In: IBC conference geothermal power Asia 2000, Manila, Philippines, Bp

    Google Scholar 

  • Chandrasekharam D (2005) Geothermal energy resources of India: past and the present. In: Proc. WGC2005 

    Google Scholar 

  • Chen C, Wang J, Qiu F, Zhao D (2015) Resilient distribution system by microgrids formation after natural disasters. IEEE Trans Smart Grid 7(2):958–966

    Article  Google Scholar 

  • Craig J, Biffi U, Galimberti RF, Ghori KAR, Gorter JD, Hakhoo N, Heron L, Thurowe DP, Vecoli M (2013) The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks. Mar Pet Geol 40:1–47

    Article  CAS  Google Scholar 

  • Dar JA, Sundarapandian S (2016) Patterns of plant diversity in seven temperate forest types of Western Himalaya, India. J Asia-Pac Biodivers 9(3):280–292

    Article  Google Scholar 

  • Dimri AP, Dash SK (2012) Wintertime climatic trends in the western Himalayas. Clim Chang 111(3–4):775–800

    Article  Google Scholar 

  • Gangwar M, Kaur G (2009) Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and ryegrass. Int J Microbiol 7:1

    Google Scholar 

  • Garcia-Lopez E, Cid C (2017) Glaciers and ice sheets as analog environments of potentially habitable Icy worlds. Front Microbiol 8:1407

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Orenes F, Cerdà A, Mataix-Solera J, Guerrero C, Bodí MB, Arcenegui V, Sempere JG (2009) Effects of agricultural management on surface soil properties and soil–water losses in eastern Spain. Soil Tillage Res 106(1):117–123

    Article  Google Scholar 

  • Greenland D, Losleben M (2001) Structure and function of an alpine ecosystem. In: Bowman WD, Seastedt TR (eds) Climate. Oxford University Press, Niwot Ridge, pp 15–31

    Google Scholar 

  • GSI (1991) Uttarkashi earthquake: October 20, 1991, Special Publication No. 30, Geological Survey of India, Calcutta

    Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):96–102

    CAS  Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–146

    Article  CAS  Google Scholar 

  • Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl Environ Microbiol 70(9):5057–5065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5(3):131–138

    Article  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9(5):1177

    Article  PubMed  Google Scholar 

  • He Z, Piceno Y, Deng Y, Xu M, Lu Z, DeSantis T, Zhou J (2012) The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME J 6(2):259

    Article  CAS  PubMed  Google Scholar 

  • Heneghan L, Coleman DC, Zou X, Crossley DA Jr, Haines BL (1998) Soil microarthropod community structure and litter decomposition dynamics: a study of tropical and temperate sites. Appl Soil Ecol 9(1–3):33–38

    Article  Google Scholar 

  • Joshi S (2018) Rhizospheric bacterial diversity in different Dalbergia sissoo Roxb. Provenances. GBPUAT, Pantnagar. p 102

    Google Scholar 

  • Joshi S, Jaggi V, Tiwari S, Sah VK, Sahgal M (2019) Multitrate phosphate solubilizing bacteria from Dalbergia sissoo Roxb. Rhizosphere in natural forests of Indian Central Himalayas. Environ Ecol 37(3A):894–908

    Google Scholar 

  • Kala CP, Rawat GS (1999) Effects of livestock grazing on the species diversity and biomass production in the alpine meadows of Garhwal Himalaya, India. Trop Ecol 40(1):69–74

    Google Scholar 

  • Kerfahi D, Tripathi BM, Dong K, Go R, Adams JM (2016) Rainforest conversion to rubber plantation may not result in lower soil diversity of bacteria, fungi, and nematodes. Microb Ecol 72(2):359–371

    Article  PubMed  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

    Google Scholar 

  • Khan MT, Khan IA, Yasmeen S, Seema N, Nizamani GS (2018) Field evaluation of diverse sugarcane germplasm in agroclimatic conditions of Tandojam, Sindh. Pak J Bot 50(4):1441–1450

    CAS  Google Scholar 

  • Koranne KD (1996) Technologies for improving productivity of hill agriculture system in Uttarakhand region. Uttarakhand today. Shree Almora Book Depot, Almora. pp 117–125

    Google Scholar 

  • Kumar B, Trivedi P, Mishra AK, Pandey A, Palni LMS (2004) Microbial diversity of soil from two hot springs in Uttaranchal Himalaya. Microbiol Res 159(2):141–146

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kikon K, Upadhyay A, Kanwar SS, Gupta R (2005) Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr Purif 41(1):38–44

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2019) Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS One 14(3):e0213844. https://doi.org/10.1371/journal.pone.0213844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhanpal TN (2014) Mushroom biodiversity in India: prospects and potential. In: Proceedings of the 8th international conference on mushroom biology and mushroom products (ICMBMP8), pp 7–16

    Google Scholar 

  • Lal JB, Gulati AK, Bisht MS (1991) Satellite mapping of alpine pastures in Himalayas. Int J Remote Sens 12(3):435–443

    Article  Google Scholar 

  • Lal JB, Gulati AK, Bist MS (2007) Satellite mapping of alpine pastures in the Himalayas. Int J Remote Sens 12(3):435–443

    Article  Google Scholar 

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci 112(35):10967–10972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YT, Jangid K, Whitman WB, Coleman DC, Chiu CY (2011) Change in bacterial community structure in response to disturbance of natural hardwood and secondary coniferous forest soils in Central Taiwan. Microb Ecol 61(2):429–437

    Article  PubMed  Google Scholar 

  • Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62

    Article  CAS  PubMed  Google Scholar 

  • Malik ZA, Pandey R, Bhatt AB (2016) Anthropogenic disturbances and their impact on vegetation in Western Himalaya, India. J Mt Sci 13(1):69–82

    Article  Google Scholar 

  • Mehta PK, Chandel RS, Mathur YS (2010) Status of white grubs in northwestern Himalaya. J Insect Sci 23(1):1–14

    Google Scholar 

  • Meyer AF, Lipson DA, Martin AP, Schadt CW, Schmidt SK (2004) Molecular and metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl Environ Microbiol 70:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Kundu S, Gupta HS (2008) Characterisation of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58(4):561–568

    Article  Google Scholar 

  • Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R, Gilbert J (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German Forest and grassland soils. PLoS One 6(2):e17000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazir R, Warmink JA, Boersma H, Van Elsas JD (2009) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71(2):169–185

    Article  PubMed  CAS  Google Scholar 

  • Nazir R, Hayat W, Rehman P, Iqbal A, Irshad U (2017) Novel P-Solubilizers from calcium bound phosphate rich pine forest of Lower Himalaya. Geomicrobiol J 34(2):119–129

    Article  CAS  Google Scholar 

  • Nogués-Bravo D, Araújo MB, Errea MP, Martinez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st Century. Glob Environ Chang 17(3–4):420–428

    Article  Google Scholar 

  • Orgiazzi A, Ballabio C, Panagos P, Jones A, Fernández-Ugalde O (2018) LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur J Soil Sci 69(1):140–153

    Article  Google Scholar 

  • Padma TV (2014a) Himalayan plants seek cooler climes. Nat News 512(7515):359

    Article  CAS  Google Scholar 

  • Padma TV (2014b) Himalayan plants seek cooler climes. Nature 512:359

    Article  CAS  PubMed  Google Scholar 

  • Pampulha ME, Oliveira A (2006) Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Curr Microbiol 53(3):238–243

    Article  CAS  PubMed  Google Scholar 

  • Pandey R (2012) Base paper for the committee to study development in hill states arising from management of forest. National Institute of Public Finance and Policy, New Delhi, p 100

    Google Scholar 

  • Pandey A, Palni LMS (1998a) Isolation of Pseudomonas corrugata from Sikkim Himalayas. World J Microbiol Biotechnol 14:411–413

    Article  Google Scholar 

  • Pandey A, Palni LMS (1998b) Isolation of Pseudomonas corrugata from Sikkim Himalaya. World J Microbiol Biotechnol 14:411–413. https://doi.org/10.1023/a:1008825514148

    Article  Google Scholar 

  • Pandey A, Palni LMS, Hebbar KP (2001) Suppression of damping-off in maize seedling by Pseudomonas corrugata. Microbiol Res 156:191–194. https://doi.org/10.1078/0944-5013-00102

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr Microbiol 53(2):102–107

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Dhakar K, Sati P, Sharma A, Kumar B, Palni LMS (2014) Geobacillus stearothermophilus (GBPI_16): a resilient hyperthermophile isolated from an autoclaved sediment sample. Proc Natl Acad Sci India Sect B Biol Sci 84(2):349–356

    Article  Google Scholar 

  • Petit NE, Froend RH, Ladd PG (1995) Grazing in remnant woodland vegetation: changes in species composition and life form groups. J Veg Sci 6:121–130

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25(6):747–759

    Article  Google Scholar 

  • Premon ME, Moawad AM, Vlek PLG (1996) Effect of phosphate-solubilizing Pseudomonas Psychrophilic bacteria. Bacteriol Rev 39:144–167

    Google Scholar 

  • Priya I, Dhar M, Bajaj B, Koul S, Vakhlu J (2016) Cellulolytic activity of thermophilic bacilli isolated from Tattapani hot spring sediment in North West Himalayas. Indian J Microbiol 56:228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Psenner R, Rosseland BO, Sommaruga R (2002) High mountain lakes and streams: indicators of a changing world. Water Air Soil Pollut Focus 2:1–397

    Article  Google Scholar 

  • Rajwar A (2014) Characterization and evaluation of biocontrol efficacy of fluorescent pseudomonads against banded leaf and sheath blight disease of Zea mays L. GBPUAT, Pantnagar. p 126

    Google Scholar 

  • Ranawat P, Rawat S (2017) Stress response physiology of thermophiles. Arch Microbiol 199(3):391–414

    Article  CAS  PubMed  Google Scholar 

  • Řeháková K, Chlumská Z, Doležal J (2011) Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb Ecol 62(2):337–346

    Article  PubMed  CAS  Google Scholar 

  • Rekhi RS, Benbi DK, Singh B (2000) Effect of fertilizers and organic manures on crop yields and soil properties in rice-wheat cropping system. Long-term soil fertility experiments in rice–wheat cropping systems. Rice–Wheat Consortium Paper Series, vol 6. pp 1–6

    Google Scholar 

  • Rodgers WA, Panwar SH (1988) Biogeographical classification of India. New Forest, Dehra Dun

    Google Scholar 

  • Sahay H, Mahfooz S, Singh AK, Singh S, Kaushik R, Saxena AK, Arora DK (2012) Exploration and characterization of agriculturally and industrially important haloalkaliphilic bacteria from environmental samples of hypersaline Sambhar lake, India. World J Microbiol Biotechnol 28(11):3207–3217

    Article  CAS  PubMed  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7(2):118

    Article  PubMed  PubMed Central  Google Scholar 

  • Sati VP (2005) Natural resource conditions and economic development in the Uttaranchal Himalaya, India. J Mt Sci 2(4):336–350

    Article  Google Scholar 

  • Sati SC, Pargaein N, Belwal M (2009) Diversity of aquatic hyphomycetes as root endophytes on pteridophytic plants in Kumaun Himalaya. J Am Sci 5(4):179–182

    Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89(1):78–90

    Google Scholar 

  • Sawhney P, Kobayashi M, Takahashi M, King PN, Mori H (2007) Participation of civil society in management of natural resources. Int Rev Environ Strateg 7:117–132

    Google Scholar 

  • Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008) Climate change, elevational range shifts, and bird extinctions. Conserv Biol 22(1):140–150

    Article  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64(2):239–245. https://doi.org/10.2478/s11756-009-0041-7

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27(5):1129–1135

    Article  CAS  Google Scholar 

  • Semwal KC, Stephenson SL, Bhatt VK, Bhatt RP (2014) Edible mushrooms of the Northwestern Himalaya, India: a study of indigenous knowledge, distribution and diversity. Mycosphere 5(3):440–461

    Article  Google Scholar 

  • Sen KK, Rao KS, Saxena KG (1997) Soil erosion due to settled upland farming in the Himalaya: a case study in Pranmati Watershed. Int J Sustain Dev World Ecol 4(1):65–74

    Article  Google Scholar 

  • Shaheen H, Ullah Z, Khan SM, Harper DM (2012) Species composition and community structure of western Himalayan moist temperate forests in Kashmir. For Ecol Manag 278:138–145

    Article  Google Scholar 

  • Shankar R (1988) Heat flow map of India and its geological and economic significance. Indian Miner 42:89–110

    Google Scholar 

  • Sharma KK, Sharma V, Gupta P, Jaya M, Kumar A, Singh B (2008) Persistence and vertical distribution of termiticide fipronil in modified ground board test. Environ Monit Assess 137(1–3):179

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Pandey A, Shouche YS, Kumar B, Kulkarni G (2009) Characterization and identification of Geobacillus spp. isolated from Soldhar hot spring site of Garhwal Himalaya, India. J Basic Microbiol 49(2):187–194

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Chaturvedi P, Reddy GSN, Suresh K (2005) Pedobacter himalayensis sp. nov., from Hamta glacier located in the Himalayan mountain range in India. Int J Syst Evol Microbiol 55:1083–1088. https://doi.org/10.1099/ijs.0.63532-0

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GS, Surya JN (2014) Soils of North-Western Himalayan eco-system and their land use, constraints, productivity potentials and future strategies. Agropedology 24(01):1–19

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    PubMed  PubMed Central  Google Scholar 

  • Singh SP, Singh JS (1991) Analytical conceptual plan to reforest Central Himalaya for sustainable development. Environ Manag 15(3):369

    Article  Google Scholar 

  • Singh V, Tulachan PM (2002) Marginal farming in mountain areas. Asian Agri-Hist 6(3):269–280. Springer

    Google Scholar 

  • Singh SK, Kundu SC, Singh S (1998) Ecosystem management (6). Mittal Publications, New Delhi

    Google Scholar 

  • Srinivas TNR, Singh SM, Pradhan S, Pratibha MS, Kishore KH, Singh AK, Begum Z, Prabagaran SR, Reddy GSN, Shivaji S (2011) Comparison of bacterial diversity in proglacial soil from Kafni glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15(6):673–690

    Article  CAS  PubMed  Google Scholar 

  • Srivastava D, Kumar A, Verma A, Swaroop S (2014) Characterization of suspended sediment in Meltwater from glaciers of Garhwal Himalaya. Hydrol Process 28(3):969–979

    Article  Google Scholar 

  • Standing D, Killham K (2007) The soil environment. In: Van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology. CRC Press, New York, pp 1–22

    Google Scholar 

  • Tewari VP, Verma RK, Von Gadow K (2017) Climate change effects in the Western Himalayan ecosystems of India: evidence and strategies. For Ecosyst 4(1):13

    Article  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005a) Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotechnol 21(6–7):941–945

    Article  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS, Bag N, Tamang MB (2005b) Colonization of rhizosphere of tea by growth promoting bacteria. Int J Tea Sci 4:19–25

    Google Scholar 

  • Trivedi S, Gehlot HS, Rao SR (2006) Protein thermostability in archaea and eubacteria. Genet Mol Res 5:816–827

    CAS  PubMed  Google Scholar 

  • Verma A, Shikot P (2014) Purification and characterization of thermostable laccase from thermophilic Geobacillus thermocatenulatus MS5 and its applications in removal of textile dyes. Sch Acad J Biosci 2:479–485

    Google Scholar 

  • Wakene N, Fite G, Abdenna D, Birhanu D (2007) Integrated Use of Organic and Inorganic Fertilizers for Maize Production. In: Utilization of diversity in land use systems: Sustainable and organic approaches to meet human needs. A paper presented on Tropentag 2007, October 9–11, 2007 Witzenhausen, Germany

    Google Scholar 

  • Wang Y, Li C, Tu C, Hoyt GD, DeForest JL, Hu S (2017) Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci Total Environ 609:341–347

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305(5683):509–513

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Cheng S, Logan BE, Regan JM (2010) Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Appl Microbiol Biotechnol 85:1575–1587

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Prasanna R (2015) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65(2):611–629

    Article  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56(3):294–307. https://doi.org/10.1002/jobm.201500230

    Article  CAS  PubMed  Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self-organization in the soil-microbe complex. Science 304:1634–1637

    Article  CAS  PubMed  Google Scholar 

  • Zornoza R, Mataix-Solera J, Guerrero C, Arcenegui V, Mataix-Beneyto J (2009) Storage effects on biochemical properties of air-dried soil samples from southeastern Spain. Arid Land Res Manag 23:213–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaggi, V., Brindhaa, N.T., Sahgal, M. (2020). Microbial Diversity in North Western Himalayan Agroecosystems: Functions and Applications. In: Goel, R., Soni, R., Suyal, D. (eds) Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1902-4_8

Download citation

Publish with us

Policies and ethics