Skip to main content

Nanobioremediation: An Emerging Approach for a Cleaner Environment

  • Chapter
  • First Online:
Microbial Bioremediation & Biodegradation

Abstract

Global environmental issues have emerged owing to rapid industrialization and urbanization. Ecological imbalance and pollution have raised serious concerns and, thus, led to adoption of better anthropogenic practices and environmental cleanup technologies including physical, chemical, and biological methods. Current treatment practices, although efficient, have made remediation processes complex. Among existing technologies, bioremediation and biotransformation are prominently being used for heavy metal remediation of soil and water, whereas biodegradation is used for toxic pollutants like polyaromatic insecticides, pesticides, plasticizers, and petroleum hydrocarbons. This chapter overviews nanotechnology-based alternative treatment strategies for efficient and sustainable bioremediation and biodegradation. It discusses the advantages and disadvantages of current technologies as well as comments on the future directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagosh V, Anuradha S, Nupur M (2013) Bioremediation of environmental and agricultural lignocellulosic waste through mushroom cultivation. Int J Chem Sci 11(1):399–409

    Google Scholar 

  • Aazam ES (2014) Environmental remediation of cyanide solutions by photocatalytic oxidation using Au/CdS nanoparticles. J Ind Eng Chem 20:2870–2875

    CAS  Google Scholar 

  • Abbasian F, Lockington R, Palanisami T, Megharaj M, Naidu R (2016) Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments. Sci Total Environ 539:370–380

    CAS  Google Scholar 

  • Abboud Y, Saffaj T, Chagraoui A, Bouari E, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576

    CAS  Google Scholar 

  • Agasti SS, Subinoy R, Myoung-Hwan P, Chae Kyu K, Chang-Cheng Y, Vincent MR (2010) Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev 62:316–328

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Nanotechnology 14:824. https://doi.org/10.1088/0957-4484/14/7/323

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel Extremophilic actinomycete, Thermomonospora sp. Langmuir 19(135):3550–3553

    CAS  Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillusfumigatus. World J Microbiol Biotechnol 28(3):1081–1086

    CAS  Google Scholar 

  • Albadarin AB, Yang Z, Mangwandi C, Glocheux Y, Walker G, Ahmad MNM (2014) Experimental design and batch experiments for optimization of Cr(VI) removal from aqueous solutions by hydrous cerium oxide nanoparticles. Chem Eng Res Des 92:1354–1362

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013a) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–888

    CAS  Google Scholar 

  • Ali MA, Idris MR, Quayum ME (2013b) Fabrication of ZnO nanoparticles by solution-combustion method for the photocatalytic degradation of organic dye. J Nanostruct Chem 3(1):1–6

    Google Scholar 

  • Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180(1):38–49

    CAS  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng:825910

    Google Scholar 

  • Amonette JE, Szecsody JE, Schaef HT, Templeton JC, Gorby YA, Fruchter JS (1994) Abiotic reduction of aquifer materials by dithionite: A promising in situ remediation technology. In: Proceedings of the 33rd Hanford symposium on health and the environment, vol 2. Battelle Press, Columbus, OH, Pasco, Forum (Wash), pp 851–881

    Google Scholar 

  • An B, Zhao D (2012) Immobilization of As (III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. J Hazard Mater 211:332–341

    Google Scholar 

  • Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    CAS  Google Scholar 

  • Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111:3433–3458

    CAS  Google Scholar 

  • Arcon I, Piccolo O, Paganelli S, Baldi F (2012) XAS analysis of a nanostructured iron polysaccharide produced anaerobically by a strain of Klebsiella oxytoca. Biometals 25(5):875–881

    CAS  Google Scholar 

  • Arunachalam R, Dhanasingh S, Kalimuthu B, Uthirappan M, Rose C, Mandal AB (2012) Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids Surf B Biointerfaces 94:226–230

    CAS  Google Scholar 

  • Asefa T, Duncan CT, Sharma KK (2009) Recent advances in nanostructured chemosensors and biosensors. Analyst 134:1980–1990

    CAS  Google Scholar 

  • Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77(5):445–459

    CAS  Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48:331

    CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68(1):88–92

    CAS  Google Scholar 

  • Bandara J, Klehm U, Kiwi J (2007) Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation. Appl Catal B Environ 76(1–2):73–81

    CAS  Google Scholar 

  • Banerjee P, Chakrabarti S, Maitra S, Dutta BK (2012) Zinc oxide nano-particles-sonochemical synthesis, characterization and application for photo-remediation of heavy metal. Ultrason Sonochem 1:85–93

    Google Scholar 

  • Barakat MA, Ramadan MH, Alghamdi MA, Algarny SS, Woodcock HL, Kuhn JN (2013) Remediation of Cu(II), Ni(II), and Cr(III) ions from simulated wastewater by dendrimer/titania composites. J Environ Manage 117:50–57

    CAS  Google Scholar 

  • Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance foruraniumremediation. Elements 4(6):407–412

    Google Scholar 

  • Bertinato J, L’Abbé MR (2004) Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. J Nutr Biochem 15:316–322

    CAS  Google Scholar 

  • Bezbaruah AN, Thompson JM, Chisholm BJ (2009) Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. J Environ Sci Health B 44(6):518–524

    CAS  Google Scholar 

  • Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M, Kumar S, Rao MV (2015a) Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J Bioremed Biodegr 6:1

    CAS  Google Scholar 

  • Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M, Kumar S, Rao MV (2015b) Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J Bioremed Biodeg 6:312

    Google Scholar 

  • Bhakyaraj K, Kumaraguru S, Gopinath K, Sabitha V, Kaleeswarran PR, Karthika V, Sudha A, Muthukumaran U, Jayakumar K, Mohan S, Arumugam A (2017) J Cluster Sci 28:463

    CAS  Google Scholar 

  • Bhaumik M, Maity A, Srinivasuc VV, Onyango MS (2012) Chem Eng J 181–182:323–333

    Google Scholar 

  • Bina B, Pourzamani H, Rashidi A, Amin MM (2012) Ethylbenzene removal by carbonnanotubes from aqueous solution. J Environ Public Health 2012, ArticleID 817187, 8p

    Google Scholar 

  • Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177(1–3):539–545

    CAS  Google Scholar 

  • Bollini P, Didas SA, Jones CW (2011) Amine-oxide hybrid materials for acid gas separations. J Mater Chem 21(39):15100–15120. https://doi.org/10.1039/C1JM12522B.

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2013) Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling. Environ Sci Pollut Res 20(9):6210–6221

    CAS  Google Scholar 

  • Boulamanti AK, Philippopoulos CJ (2009) Photocatalytic degradation of C5C7 alkanes in the gas-phase. Atmos Environ 43(20):3168–3174. https://doi.org/10.1016/j.atmosenv.2009.03.036

    Article  CAS  Google Scholar 

  • Buhleier E, Wehner W, Vögtle F (1978) ‘Cascade’-and “nonskidchain-like” synthesesofmolecularcavitytopologies. Synthesis 2:155–158

    Google Scholar 

  • Calderon B, Fullana A (2015) Heavy metal release due to aging effect during zero-valent iron nanoparticles remediation. Water Res 83:1–9

    CAS  Google Scholar 

  • Campbell ML, Guerra FD, Dhulekar J, Alexis F, Whitehead DC (2015) Target-specific capture of environmentally relevant gaseous aldehydes and carboxylic acids with functional nanoparticles. Chem A Eur J 21(42):14834–14842. https://doi.org/10.1002/chem.201502021

    Article  CAS  Google Scholar 

  • Camposeco R, Castillo S, Mugica V, Mejia-Centeno I, Marín J (2014) Novel V2O5/NTiO2Al2O3 nanostructured catalysts for enhanced catalytic activity in NO reduction by NH3. Catal Commun 45:5458. https://doi.org/10.1016/j.catcom.2013.10.025

    Article  CAS  Google Scholar 

  • Cantrell KJ, Kaplan DI, Wietsma TW (1995) Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater 42:201–212

    CAS  Google Scholar 

  • Cao CY, Cui ZM, Chen CQ, Song WG, Cai W (2010) Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J Phys Chem 114:9865–9870

    CAS  Google Scholar 

  • Cappello S, Mancini G, Pistone A, Azzaro M, Bottino F, Genovese L et al (2014) STRANgE, integrated physical–biological–mechanical system for recovery in of the “oil spill” in Antarctic environment. Rev Environ Sci Bio/Technol 3(4):369–337

    Google Scholar 

  • Castillo VA, Barakat MA, Ramadan MH, Woodcock HL, Kuhn JN (2014) Metal ion remediation by polyamidoamine dendrimers: a comparison of metal ion, oxidation state, and titania immobilization. Int J Environ Sci Technol 11:1497–1502

    CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83(1):42–48

    CAS  Google Scholar 

  • Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F (2017a) Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeter Biodegr 119:419–428

    CAS  Google Scholar 

  • Cecchin I, Reddy KR, Thorme A, Tessaro EF, Schnaid F (2017b) Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeteriorat Bioremed 119:419–428

    CAS  Google Scholar 

  • Chandra V, Kim KS (2011) Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem Commun 47:3942–3944

    CAS  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    CAS  Google Scholar 

  • Chang MC, Kang HY (2009) Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. J Environ Sci Health A 44(6):576–582

    CAS  Google Scholar 

  • Chang M, Shu H, Hsieh W, Wang M (2005) Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil. J Air Waste Manag Assoc 55(8):1200–1207

    CAS  Google Scholar 

  • Chang M-C, Shu H-Y, Hsieh W-P, Wang M-C (2007) Remediation of soil contaminated with pyrene using ground nanoscale zero-valent iron. J Air Waste Manag Assoc 57(2):221–227

    Google Scholar 

  • Chang C, Lian F, Zhu L (2011) Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environ Pollut 159:2507–2514

    CAS  Google Scholar 

  • Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806

    CAS  Google Scholar 

  • Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325

    CAS  Google Scholar 

  • Chauhan NS, Ranjan R, Purohit HJ, Kalia VC, Sharma R (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139

    CAS  Google Scholar 

  • Chaung SH, Wu PF, Kao YL, Yan W, Lien HL (2014) Nanoscale zero-valent iron for sulfide removal from digested piggery wastewater. J Nanomater 2014:518242

    Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Chai Z (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    CAS  Google Scholar 

  • Chen YS, Hung YC, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858–864

    CAS  Google Scholar 

  • Chen X, Cen C, Tang Z, Zeng W, Chen D, Fang P et al (2013) The key role of pH value in the synthesis of titanate nanotubes-loaded manganese oxides as a superior catalyst for the selective catalytic reduction of NO with NH3. J Nanomater 7:871528. https://doi.org/10.1155/2013/871528

    Article  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    CAS  Google Scholar 

  • Cho HH, Smith BA, Wnuk JD, Fairbrother DH, Ball WP (2008) Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environ Sci Technol 42:2899–2905

    CAS  Google Scholar 

  • Choi H, Al-Abed SR, Agarwal S, Dionysiou DD (2008) Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chem Mater 20(11):3649–3655

    CAS  Google Scholar 

  • Choina J, Bagabas A, Fischer C, Flechsig GU, Kosslick H, Alshammari A, Schulz A (2015) The influence of the textural properties of ZnO nanoparticles on adsorption and photocatalytic remediation of water from pharmaceuticals. Catal Today 241:47–54

    CAS  Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    CAS  Google Scholar 

  • Cloete TE, Kwaadsteniet MD, Botes M, Lopez-Romero JM (2010) Nanotechnology in water treatment applications. Caister Academic Press, Wymondham

    Google Scholar 

  • Cookson JT Jr (1995) Bioremediation engineering: Design and application. McGraw-Hill, Inc, New York

    Google Scholar 

  • Corso CR, De Almeida ACM (2009) Bioremediation of dyes in textile effluents by Aspergillus oryzae. Microb Ecol 57(2):384–390

    CAS  Google Scholar 

  • Crane RA, Dickinson M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45:2931–2942

    CAS  Google Scholar 

  • Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF (2008) Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour Technol 99(10):4515–4519. https://doi.org/10.1016/j.biortech.2007.08.041

    Article  CAS  Google Scholar 

  • Crump CJ, Gilbertson JD, Chandler BD (2008) CO oxidation and toluene hydrogenation by Pt/TiO2 catalysts prepared from dendrimer encapsulated nanoparticle precursors. Top Catal 49:233–240

    CAS  Google Scholar 

  • Cuevas R, Durán N, Diez MC, Tortella GRO, Rubilar O (2015) J Nanomater 2015:1

    Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RL (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400(1):42–51

    CAS  Google Scholar 

  • Cutting RS, Coker VS, Telling ND, Kimber RL, Pearce CI, Ellis BL, Arenholz E (2010) Optimizing Cr (VI) and Tc (VII) remediation through nanoscale biomineral engineering. Environ Sci Technol 44(7):2577–2584

    CAS  Google Scholar 

  • Dai MH, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70:2391–2397

    CAS  Google Scholar 

  • Darvishi Cheshmeh Soltani R, Rezaee A, Safari M, Khataee AR, Karimi B (2015) Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates. Desalin Water Treat 53(6):1613–1620

    CAS  Google Scholar 

  • Das S, Sen B, Debnath N (2015) Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ Sci Pollut Res 22:18333–18344

    Google Scholar 

  • Dasand I, Ansari SA (2009) Nanomaterials in science and technology. J Sci Ind Res 68(8):657–667

    Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surf B 79(1):5–18

    CAS  Google Scholar 

  • Daus B, Wennrich R, Weiss H (2004) Sorption materials for arsenic removal from water: a comparative study. Water Res 38(12):2948–2954

    CAS  Google Scholar 

  • Devi RR, Umlong IM, Das B, Borah K, Thakur AJ, Raul PK, Banerjee S, Singh L (2014) Removal of iron and arsenic (III) from drinking water using iron oxide-coated sand and limestone. Appl Water Sci 4:175–182

    CAS  Google Scholar 

  • Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. CRC Press, Boca Raton, pp 1–320

    Google Scholar 

  • Di ZC, Ding J, Peng XJ, Li YH, Luan ZK, Liang J (2006) Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62:861–865

    CAS  Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 39:1366–1377

    CAS  Google Scholar 

  • van Dillewijn P, Caballero A, Paz JA, Gonzalez-Perez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41(4):1378–1383

    Google Scholar 

  • Dimitrov D (2006) Interactions of antibody-conjugated nanoparticles with biological surfaces. Colloids Surf A Physicochem Eng Asp 8:282–283

    Google Scholar 

  • Donnell GM, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179

    Google Scholar 

  • Dorjee P, Amarasiriwardena D, Xing B (2014) Antimony adsorption by zero-valent iron nanoparticles (nZVI): Ion chromatography–inductively coupled plasma mass spectrometry (IC–ICP-MS) study. Microchem J 116:15–23

    CAS  Google Scholar 

  • Drese JH, Talley AD, Jones CW (2011) Aminosilica materials as adsorbents for the selective removal of aldehydes and ketones from simulated bio-oil. ChemSusChem 4(3):379–385. https://doi.org/10.1002/cssc.201000347

    Article  CAS  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701. https://doi.org/10.1038/nrc1958

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90(5):1609–1624

    Google Scholar 

  • Eatemadi A, Daraee H, Karimkhanloo H et al (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393. https://doi.org/10.1186/1556-276X-9-3934

    Article  Google Scholar 

  • Ekramul Mahmud HNM, Obidul Huq AK, Yahya RB (2016) The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv 6:14778–14791

    Google Scholar 

  • Elaziouti A, Ahmed B (2011) ZnO-assisted photocatalytic degradation of congo Red and benzopurpurine 4B in aqueous solution. J Chem Eng Process Technol 2:1–9

    Google Scholar 

  • Elcey C, Kuruvilla AT, Thomas D (2014) Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int J Curr Microbiol Appl Sci 3:408–417

    CAS  Google Scholar 

  • El-Kemary M, El-Shamy H, El-Mehasseb I (2010) Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. JOL 130(12):2327–2331

    CAS  Google Scholar 

  • Emmanuel R, Karuppiah C, Chen SM, Palanisamy S, Padmavathy S, Prakash P (2014) Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia. J Hazard Mater 279:117–124

    CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    CAS  Google Scholar 

  • Fan X, Zhang F, Zhang G, Du J (2007) Mechanism of 5-amino-2-formylbenzene sulfonic acid formation during reduction of 4,4′-dinitrostilbene-2,2′-disulfonic acid by Zero-Valent iron. Dyes Pigm 75(1):189–193

    CAS  Google Scholar 

  • Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Zhao L (2012a) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@ SiO2 composite particles. J Environ Radioact 106:40–46

    CAS  Google Scholar 

  • Fan L, Luo C, Li X, Lu F, Qiu H, Sun M (2012b) Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater 215:272–279

    Google Scholar 

  • Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B Biointerfaces 103:523–529

    CAS  Google Scholar 

  • Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens Actuators B 161:880–885

    CAS  Google Scholar 

  • Farhanian D, Haghighat F, Lee C-S, Lakdawala N (2013) Impact of design parameters on the performance of ultraviolet photocatalytic oxidation air cleaner. Build Environ 66:148–157. https://doi.org/10.1016/j.buildenv.2013.04.010

    Article  Google Scholar 

  • Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Super paramagnetic high-surface area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217–218:439–446

    Google Scholar 

  • Fresnais J, Yan M, Courtois J, Bostelmann T, Bée A, Berret JF (2013) Poly (acrylic acid)-coated iron oxide nanoparticles: quantitative evaluation of the coating properties and applications for the removal of a pollutant dye. J Colloid Interface Sci 395:24–30

    CAS  Google Scholar 

  • Fruchter JS, Cole CR, Williams MD, Vermeul VR, Teel SS, Amonette JE, Szecsody JE, Yabusaki SB (1997) Creation of a subsurface permeable treatment barrier using in situ redox manipulation. Pacific Northwest National Laboratory, Richland

    Google Scholar 

  • Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem 18:1267–1278

    CAS  Google Scholar 

  • Galhardi CM, Diniz YS, Faine LA, Rodrigues HG, Burneiko RC, Ribas BO, Novelli EL (2004) Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem Toxicol 42:2053–2060

    CAS  Google Scholar 

  • Gangula A, Podila R, Karanam L, Janardhana C, Rao AM (2011) Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27:15268–15274

    Google Scholar 

  • Gao C, Zhang W, Li H, Lang L, Xu Z (2008) Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Crystal Growth and Design 8:3785–3790

    CAS  Google Scholar 

  • Georgiou Y, Dimos K, Beltsios K, Karakassides MA, Deligiannakis Y (2015) Hybrid [polysulfone–zero valent iron] membranes: synthesis, characterization and application for As III remediation. Chem Eng J 281:651–660

    CAS  Google Scholar 

  • Gethard K, Sae-Khow O, Mitra S (2011) Water desalination using carbon-nanotube-enhanced membrane distillation. ACS Appl Mater Interfaces 3(2):110–114. https://doi.org/10.1021/am100981s

    Article  CAS  Google Scholar 

  • Gong J-L, Wang B, Zeng G-M et al (2009a) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164(2-3):1517–1522

    CAS  Google Scholar 

  • Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Liang Y (2009b) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522

    CAS  Google Scholar 

  • Goswami A, Raul PK, Purkait MK (2012) Arsenic adsorption using copper (II) oxide nanoparticles. Chem Eng Res Des 90(9):1387–1396

    CAS  Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    CAS  Google Scholar 

  • Gowramma B, Keerthi U, Rafi M et al (2015) Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech 5(2):195–201. https://doi.org/10.1007/s13205-014-0210-4

    Article  CAS  Google Scholar 

  • Gray NF (1999) Water technology. Wiley, New York, pp 473–474

    Google Scholar 

  • Gu D, Shang S, Yu Q, Shen J (2016) Green synthesis of nitrogen-doped carbon dots from lotus root for Hg (II) ions detection and cell imaging. Appl Surf Sci 390:38–42

    CAS  Google Scholar 

  • Guan H, Bestland E, Zhu C, Zhu H, Albertsdottir D, Hutson J, Ellis AV (2010) Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. J Hazard Mater 183:616–621

    CAS  Google Scholar 

  • Guerra FD, Campbell ML, Whitehead DC, Alexis F (2017) Tunable properties of functional nanoparticles for efficient capture of VOCs. Chem Select 2(31):9889–9894. https://doi.org/10.1002/slct.201701736

    Article  CAS  Google Scholar 

  • Guerra FD, Attia M, Whitehead D, Alexis F (2018a) Nanotechnology for environmental remediation: materials and applications. Molecules 23(7):1760

    Google Scholar 

  • Guerra FD, Campbell ML, Attia MF, Whitehead DC, Alexis F (2018b) Capture of aldehyde VOCs using a series of amine-functionalized cellulose nanocrystals. Chem Select 3(20):54955501. https://doi.org/10.1002/slct.201703149

    Article  CAS  Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents. Sep Purif Technol 38:43–74

    CAS  Google Scholar 

  • Guo R, Guo X, Yu D, Hu J (2012) Application research in water treatment of PAMAM dendrimer. Huagong Jinzhan 3:039

    Google Scholar 

  • Gupta K, Ghosh UC (2009) Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution. J Hazard Mater 161:884–892

    CAS  Google Scholar 

  • Gupta N, Singh HP, Sharma RK (2010a) Single-pot synthesis: plant mediated gold nanoparticles catalyzed reduction of methylene blue in presence of stannous chloride. Colloids Surf A 367(1):102–107

    CAS  Google Scholar 

  • Gupta AK, Deva D, Sharma A, Verma N (2010b) Fe-grown carbon nanofibers for removal of arsenic (V) in wastewater. Ind Eng Chem Res 49(15):7074–7084

    CAS  Google Scholar 

  • Gupta K, Maity A, Ghosh UC (2010c) Manganese associated nanoparticles agglomerate of iron (III) oxide: synthesis, characterization and arsenic (III) sorption behavior with mechanism. J Hazard Mater 184:832–842

    CAS  Google Scholar 

  • Gupta K, Bhattacharya S, Chattopadhyay D, Mukhopadhyay A, Biswas H, Dutta J, Ray NR, Ghosh UC (2011a) Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic (V) sorption behavior. Chem Eng J 172:219–229

    CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011b) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    CAS  Google Scholar 

  • Gurunathan S, Kim E, Han JW, Park JH, Kim JH (2015) Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules 20(12):22476–22498

    CAS  Google Scholar 

  • Harris C, Kamat PV (2009) Photocatalysis with CdSe nanoparticles in confined media: mapping charge transfer events in the subpicosecond to second timescales. ACS Nano 3:682–690

    CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92:2355–2388

    CAS  Google Scholar 

  • Hassan MS, Amna T, Al-Deyab SS, Kim HC, Khil MS (2015) Monodispersed 3D MnWO4–TiO2 composite nanoflowers photocatalysts for environmental remediation. Curr Appl Phys 15:753–758

    Google Scholar 

  • Hassanshahian M, Emtiazi G, Cappello S (2012) Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull 64:7–12

    CAS  Google Scholar 

  • Hazen TC (2018) Bioremediation. In: Microbiology of the terrestrial deep subsurface 2018 Jan 10. CRC Press, pp 247–266

    Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61(18):3984–3987

    CAS  Google Scholar 

  • He X, Aker WG, Pelaez M, Lin Y, Dionysiou DD, Hwang HM (2016) Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: implication for field remediation. J Photochem Photobiol A 314:81–92

    CAS  Google Scholar 

  • Henderson AD, Demond AH (2013) Permeability of iron sulfide (FeS)-based materials for groundwater remediation. Water Res 47:1267–1276

    CAS  Google Scholar 

  • Honary S, Barabadi H, Fathabad EG, Naghibi F (2012) Dig J Nanomater Biostruct 7:999

    Google Scholar 

  • Hristovski KD, Nguyen H, Westerhoff PK (2009a) Removal of arsenate and 17-ethinyl estradiol (EE2) by iron (hydr) oxide modified activated carbon fibers. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(4):354–361

    CAS  Google Scholar 

  • Hristovski KD, Westerhoff PK, Moller T, Sylvester P (2009b) Effect of synthesis conditions on nano-iron (hydr) oxide impregnated granulated activated carbon. Chem Eng J 146(2):237–243

    CAS  Google Scholar 

  • Hu H, Wang Z, Pan L (2010) Synthesis of monodisperse Fe3O4@ silica core–shell microspheres and their application for removal of heavy metal ions from water. J Alloys Compd 492:656–661

    CAS  Google Scholar 

  • Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163(1):174–179

    CAS  Google Scholar 

  • Huang HY, Yang RT, Chinn D, Munson CL (2003) Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind Eng Chem Res 42(12):2427–2433. https://doi.org/10.1021/ie020440u.

    Article  CAS  Google Scholar 

  • Huang J, Wang W, Lin L, Li Q, Lin W, Li M, Mann S (2009) A general strategy for the biosynthesis of gold nanoparticles by traditional Chinese medicines and their potential application as catalysts. Chem Asian J 4(7):1050–1054

    CAS  Google Scholar 

  • Huang ZH, Zheng X, Lv W, Wang M, Yang QH, Kang F (2011) Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558–7562

    CAS  Google Scholar 

  • Huang J, Cao Y, Liu Z, Deng Z, Tang F, Wang W (2012a) Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chem Eng J 180:75–80

    CAS  Google Scholar 

  • Huang CC, Lo SL, Lien HL (2012b) Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant. Chem Eng J 203:95–100

    CAS  Google Scholar 

  • Huang Y, Ho SS, Lu Y, Niu R, Xu L, Cao J et al (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21(1). https://doi.org/10.3390/molecules21010056

  • Husken G, Hunger M, Brouwers HJH (2009) Experimental study of photocatalytic concrete products for air purification. Build Environ 44(12):2463–2474. https://doi.org/10.1016/j.buildenv.2009.04.010

    Article  Google Scholar 

  • Ifang S, Gallus M, Liedtke S, Kurtenbach R, Wiesen P, Kleffmann J (2014) Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmos Environ 91:154161. https://doi.org/10.1016/j.atmosenv.2014.04.001

    Article  CAS  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4(165):1–7

    Google Scholar 

  • Ion AC, Ion I, Culetu, D. Gherase, Carbonbased nanomaterials. In: Environmental applications, Romania, 2010.

    Google Scholar 

  • Islam AA, Ferdous T, Das AK (2015) Photodegradation of brown CGG dye using ZnO nanoparticles synthesized by ionic template method. ICMEIE-2015 Proceedings, pp 1–5

    Google Scholar 

  • Jabeen H, Kemp KC, Chandra V (2013) Synthesis of nano zerovalent iron nanoparticles–graphene composite for the treatment of lead contaminated water. J Environ Manage 130:429–435

    CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928

    CAS  Google Scholar 

  • Jain CK, Singh RD (2012) Technological options for the removal of arsenic with special reference to South East Asia. J Environ Manage 107:1–18

    CAS  Google Scholar 

  • Jain N, Bhargava A, Panwar J (2014) Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chem Eng J 243:549–555

    CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Roopan SM, Kirthia AV, Se-K K, Iyappan M, Siva C (2013a) Spectrochim Acta A Mol Biomol Spect 107:82

    CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim SK, Iyappan M, Siva C (2013b) Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A 107:82–89

    CAS  Google Scholar 

  • Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Rev 3:55–67

    CAS  Google Scholar 

  • Jeong J, Sekiguchi K, Lee W, Sakamoto K (2005) Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates. J Photochem Photobiol A Chem 169(3):279–287. https://doi.org/10.1016/j.jphotochem.2004.07.014

    Article  CAS  Google Scholar 

  • Jia K, Pan B, Lv L, Zhang Q, Wang X, Pan B, Zhang W (2009) Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters. J Colloid Interface Sci 331:453–457

    CAS  Google Scholar 

  • Jing L, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Mater Solar Cells 90(12):1773–1787

    CAS  Google Scholar 

  • Jing C, Meng X, Calvache E, Jiang G (2009) Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environ Pollut 157:2514–2519

    CAS  Google Scholar 

  • Jong T, Parry DL (2003) Removal of sulphate and heavy metals by sulphate reducing bacteria in short-term bench scale up flow anaerobic packed bed reactor runs. Water Res 37:3379–3389

    CAS  Google Scholar 

  • Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70(3):418–425

    CAS  Google Scholar 

  • Joshi MK, Pant HR, Liao N, Kim JH, Kim HJ, Park CH, Kim CS (2015) In-situ deposition of silver-iron oxide nanoparticles on the surface of fly ash for water purification. J Colloid Interface Sci 453:159–168

    CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, Ghachtouli NE (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R, Rosenkranz F, editors. Biodegradation-life of sciences, pp 290–320. ISBN 978-953-51-1154-2.

    Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, Mani Kanth S, Kartikeyan B, Gurunathan S (2010) Colloids Surf B Biointerfaces 77:257

    CAS  Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem 106(32):7729–7744

    CAS  Google Scholar 

  • Kampalanonwat P, Supaphol P (2010) Preparation and adsorption behavior of aminated electro spun polyacrylonitrile nanofibre mats for heavy metal ion removal. Appl Mater Interfaces 2(2):3619–3627

    CAS  Google Scholar 

  • Kandah MI, Meunier J-L (2007a) Removalof nickel ionsfrom water by multi-walled carbonnanotubes. J Hazard Mater 146(1–2):283–288

    CAS  Google Scholar 

  • Kandah MI, Meunier JL (2007b) Removal of nickel ions from water by multi-walled carbon nanotubes. J Hazard Mater 146:283–288

    CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removalof arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298

    CAS  Google Scholar 

  • Kanel SR, Greneche J-M, Choi H (2006) Arsenic(V)removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050

    CAS  Google Scholar 

  • Karuppiah C, Palanisamy S, Chen SM, Emmanuel R, Ali MA, Muthukrishnan P, Al-Hemaid FM (2014) Green biosynthesis of silver nanoparticles and nanomolar detection of p-nitrophenol. J Solid State Electrochem 18:1847–1854

    CAS  Google Scholar 

  • Kaul R, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, Tarafdar J (2012) Magnesium and iron nanoparticles production using microorganism and various salts. Mater Sci Poland 30:254–258

    CAS  Google Scholar 

  • Kavitha KS, Baker S, Rakshith D, Kavitha HU, Yashwantha Rao HC, Harini BP, Satish S (2013) Int Res J Bio Sci 2:66–76

    Google Scholar 

  • Kazeminezhad I, Sadollahkhani A (2014) Photocatalytic degradation of Eriochrome black-T dye using ZnO nanoparticles. Mater Lett 120:267–270

    CAS  Google Scholar 

  • Khan R, Fuleka MH (2016) Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. J Colloid Interface Sci 475:184–191

    CAS  Google Scholar 

  • Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545. https://doi.org/10.1016/S0950-4230(00)00007-3

    Article  Google Scholar 

  • Khan MM, Adil SF, Al-Mayouf A (2015a) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464

    Google Scholar 

  • Khan SB, Marwani HM, Asiri AM, Bakhsh EM (2015b) Exploration of calcium doped zinc oxide nanoparticles as selective adsorbent for extraction of lead ion. Desalin Water Treat:1–10. https://doi.org/10.1080/19443994.2015.1109560

  • Khedr M, Abdelhalim K, Soliman N (2009) Synthesis and photocatalytic activity of nano-sized iron oxides. Mater Lett 63:598–601

    CAS  Google Scholar 

  • Khezami L, Taha KK, Ghiloufi I, El Mir L (2016) Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles. Water Sci Technol 73(4):881–889

    CAS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energ Environ Sci 5:8075–8109

    CAS  Google Scholar 

  • Kim Y-H, Carraway ER (2000) Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol 34(10):2014–2017

    CAS  Google Scholar 

  • Kim Y, Johnson RC, Hupp JT (2001a) Gold nanoparticlebased sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167

    Google Scholar 

  • Kim YC, Sasaki S, Yano K, Ikebukuro K, Haphimoto K, Karube I (2001b) Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis. Anal Chem Acta 59:432

    Google Scholar 

  • Kim HY, Kim IK, Shim JH, Kim YC, Han TH, Chung KC, Kim IS (2006) Removal of alachlor and pretilachlor by laboratory-synthesized zerovalent iron in pesticide formulation solution. Bull Environ Contam Toxicol 77:826

    CAS  Google Scholar 

  • Kim JH, Tratnyek PG, Chang YS (2008) Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol 42(11):4106–4112

    CAS  Google Scholar 

  • Kim A, Muthuchamy N, Yoon C, Joo S, Park K (2018) MOF-derived Cu@ Cu2O nanocatalyst for oxygen reduction reaction and cycloaddition reaction. Nano 8:138

    Google Scholar 

  • Klimkova S, Cernik M, Lacinova L, Nosek J (2008) Application of nanoscale zero-valent iron for groundwater remediation: laboratory and pilot experiments. Nano 3:287–289

    CAS  Google Scholar 

  • Kocaoba S, Orhan Y, Akyüz T (2007) Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite. Desalination 214:1–10

    CAS  Google Scholar 

  • Kostal JRY, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587

    CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16(7):291–300

    CAS  Google Scholar 

  • Krishnaswamy K, Vali H, Orsat VJ (2014) Value-adding to grape waste: Green synthesis of gold nanoparticles. J Food Eng 142:210–220

    CAS  Google Scholar 

  • Kruefu V, Ninsonti H, Wetchakun N, Inceesungvorn B, Pookmanee P, Phanichphant S (2012) Photocatalytic degradation of phenol using Nb-loaded ZnO nanoparticles. Eng J-CANDA 16(3):91–100

    Google Scholar 

  • Kumar SR, Gopinath P (2017) Nano-bioremediation applications of nanotechnology for bioremediation. In: Handbook of advanced industrial and hazardous wastes management. CRC Press, Boca Raton, pp 27–48

    Google Scholar 

  • Kumar D, Karthik L, Kumar G, Roa K (2011) B Pharmacology 3:31100

    Google Scholar 

  • Kumar G, Kumar R, Hwang SW, Umar A (2014) Photocatalytic degradation of direct red-23 dye with ZnO nanoparticles. J Nanosci Nanotechnol 14(9):7161–7166

    CAS  Google Scholar 

  • Kumar N, Labille J, Bossa N et al (2017) Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances. Environ Sci Pollut Res 24:9269–9277

    CAS  Google Scholar 

  • Kumari MM, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta, Part A 137:185–192

    Google Scholar 

  • Kuppusamy P, Yousoff MM, Manian GP, Govindan N (2014) Saudi Pharm J 24:473. https://doi.org/10.1016/j.jsps.2014.11.013

    Article  Google Scholar 

  • Lacina P, Dvorak V, Vodickova E, Barson P, Kalivoda J, Goold S (2015) The application of nano-sized zero-valent iron for in situ remediation of chlorinated ethylenes in groundwater: a field case study. Water Environ Res 87(4):326

    CAS  Google Scholar 

  • Laumann S, Micić V, Lowry GV, Hofmann T (2013) Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ Pollut 179:53–60

    CAS  Google Scholar 

  • Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem 119:4171–4174

    Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927

    CAS  Google Scholar 

  • Lee CL, Lee HY, Tseng KH, Hong PA, Jou CJG (2011) Enhanced dechlorination of chlorobenzene by microwave-induced zero-valent iron: particle effects and activation energy. Environ Chem Lett 9(3):355–359

    CAS  Google Scholar 

  • Lee T, Liou S, Bai H (2017) Comparison of titania nanotubes and titanium dioxide as supports of lowtemperature selective catalytic reduction catalysts under sulfur dioxide poisoning. J Air Waste Manage Assoc 67(3):292305. https://doi.org/10.1080/10962247.2016.1231144

    Article  CAS  Google Scholar 

  • Li Y, Li B (2011) Study on fungi-bacteria consortium bioremediation of petroleum contaminated mangrove sediments amended with mixed biosurfactants. Adv Mat Res 183–185:1163–1167

    Google Scholar 

  • Li XQ, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni (II) sequestration. Langmuir 22(10):4638–4642

    CAS  Google Scholar 

  • Li Y, Liu F, Xia B et al (2010a) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177(1–3):876–880

    CAS  Google Scholar 

  • Li Y, Liu F, Xia B, Du Q, Zhang P, Wang D, Xia Y (2010b) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177:876–880

    CAS  Google Scholar 

  • Li Y, Li T, Jin Z (2011a) Stabilization of Fe0 nanoparticles with silica fume for enhanced transport and remediation of hexavalent chromium in water and soil. J Environ Sci 23:1211–1218

    CAS  Google Scholar 

  • Li X, Zhu Z, Zhao Q, Wang L (2011b) Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: a comparative study. J Hazard Mater 186(23):2089–2096. https://doi.org/10.1016/j.jhazmat.2010.12.111

    Article  CAS  Google Scholar 

  • Li Y, Ma H, Ren B, Li T (2013a) Simultaneous adsorption and degradation of Cr (VI) and Cd (II) ions from aqueous solution by silica-coated Fe0 nanoparticles. J Anal Methods Chem 2013:649503

    Google Scholar 

  • Li F, Lei C, Shen Q, Li L, Wang M, Guo M, Yao S (2013b) Analysis of copper nanoparticles toxicity based on a stressresponsive bacterial biosensor array. Nanoscale 5:653–662

    CAS  Google Scholar 

  • Li G, Li Y, Wang Z, Liu H (2017) Mater Chem Phys 187:1330. https://doi.org/10.1016/j.matchemphys.2016.11.057

    Article  CAS  Google Scholar 

  • Liang W, Dai C, Zhou X, Zhang Y (2014) Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions. PLoS One 9:e85686

    Google Scholar 

  • Lim TT, Feng J, Zhu BW (2007) Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles. Water Res 41(4):875–883

    CAS  Google Scholar 

  • Lin HF, Liao SC, Hung SW (2005) The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol A 174(1):82–87

    CAS  Google Scholar 

  • Lithoxoos GP, Labropoulos A, Peristeras LD, Kanellopoulos N, Samios J, Economou IG (2010) Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: a combined experimental and Monte Carlo molecular simulation study. J Supercrit Fluids 55(2):510–523. https://doi.org/10.1016/j.supflu.2010.09.017

    Article  CAS  Google Scholar 

  • Litter MI, Cortina JL, Fluza AMA, Futuro A, Tsakiroglou C (2014) In-situ technologies for groundwater treatment: the case of arsenic. In: Bundschuh J, Holländer HM, Ma LQ (eds) In-situ remediation of arsenic contaminated sites. CRC Press, Boca Raton

    Google Scholar 

  • Liu D, Wang J, Bai X, Zong R, Zhu Y (2016) Self-assembled PDINH supramolecular system for photocatalysis under visible light. Adv Mater 28:7284–7290

    CAS  Google Scholar 

  • Liu P, Yu X, Wang F, Zhang W, Yang L, Liu Y (2017) Degradation of formaldehyde and benzene by TiO2 photocatalytic cement based materials. J Wuhan Univ Technol Mater Sci Ed 32(2):391396. https://doi.org/10.1007/s11595-017-1608-8

    Article  CAS  Google Scholar 

  • Lofrano G, Libralato G, Brown JJ (2017) Nanotechnologies for environmental remediation—applications and implications. Springer, New York

    Google Scholar 

  • López-Téllez G, Barrera-Díaz CE, Balderas-Hernández P, Roa-Morales G, Bilyeu B (2011) Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chem Eng J 173:480–485

    Google Scholar 

  • Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    CAS  Google Scholar 

  • Luo T, Cui J, Hu S, Huang Y, Jing C (2010) Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ Sci Technol 44:9094–9098

    CAS  Google Scholar 

  • Luo F, Yang D, Chen Z, Megharaj M, Naidu R (2016) Onestep green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II. J Hazard Mater 303:145–153

    CAS  Google Scholar 

  • Ma L, Chen A, Lu J, Zhang Z, He H, Li C (2014) In situ synthesis of CNTs/Fe–Ni/TiO2 nanocomposite by fluidized bed chemical vapour deposition and the synergistic effect in photocatalysis. Particuology 14:24–32

    CAS  Google Scholar 

  • Mahdavian AR, Mirrahimi MAS (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159(1):264–271

    CAS  Google Scholar 

  • Majumder BR (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4:4380

    Google Scholar 

  • Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3(1):44

    Google Scholar 

  • Mallard I, Städe LW, Ruellan S, Jacobsen PAL, Larsen KL, Fourmentin S (2015) Synthesis, characterization and sorption capacities toward organic pollutants of new β-cyclodextrin modified zeolite derivatives. Colloids Surf A 482:50–57

    CAS  Google Scholar 

  • Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Shreelakshmi C, Reddy VS, Devaprasad RB (2011) Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Biostruct 6:181–186

    Google Scholar 

  • Malwal D, Gopinath P (2015) Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation. Environ Sci Nano 2:78–85

    CAS  Google Scholar 

  • Malwal D, Gopinath P (2016) Fabrication and applications of ceramic nanofibers in water remediation: a review. Crit Rev Environ Sci Technol 46(5):500–534

    Google Scholar 

  • Mankbadi MR, Barakat MA, Ramadan MH, Woodcock HL, Kuhn JN (2011) Iron chelation by polyamidoamine dendrimers: a second-order kinetic model for metal–amine complexation. J Phys Chem B 115:13534–13540

    CAS  Google Scholar 

  • Manning BA, Hunt ML, Amrhein C, Yarmoff JA (2002) Arsenic (III) and Arsenic (V) reactions with zerovalent iron corrosion products. Environ Sci Technol 36:5455–5461

    CAS  Google Scholar 

  • Mapelli F, Scoma A, Michaoud G, Aulenta F, Boon N, Borin S et al (2017) Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol 35:860–870

    CAS  Google Scholar 

  • Masciangioli T, Zhang W-X (2003) Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol 37(5):102A–108A. https://doi.org/10.1021/es0323998.

    Article  CAS  Google Scholar 

  • Mashrai A, Khanam H, Aljawfi RN (2013) Arabian J Chem 10:S1530. https://doi.org/10.1016/j.arabjc.2013.05.004

    Article  CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    CAS  Google Scholar 

  • Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8(1–2):71–75

    CAS  Google Scholar 

  • Mazumdar H, Haloi N (2011) J Microbiol Biotechnol Res 1:39

    CAS  Google Scholar 

  • Mishra A, Tripathy S, Wahab R, Jeong SH, Hwang I, Yang YB, Kim YS, Shin HS, Yun SI (2011) Appl Microbiol Biotechnol 92:617

    CAS  Google Scholar 

  • Modi S, Pathak B, Fulekar MH (2015) Microbial synthesized silver nanoparticles for decolorization and biodegradation of azo dye compound. J Environ Nanotechnol 4(2):37–46

    CAS  Google Scholar 

  • Mohsenzadeh F, Chehregani Rad A (2012) Bioremediation of heavy metal pollution by nano-particles of noaea mucronata. Int J Biosci Biochem Bioinformatics 2:85–89

    Google Scholar 

  • Mondal P, Majumdar CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater B137:464–479

    Google Scholar 

  • Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater 177:962–970

    CAS  Google Scholar 

  • Moore AM, De Leon CH, Young TM (2003) Rate and extent of aqueous perchlorate removal by iron surfaces. Environ Sci Technol 37(14):3189–3198

    CAS  Google Scholar 

  • Morillo D, Uheida A, Pérez G, Muhammed M, Valiente M (2015) Arsenate removal with 3-mercaptopropanoic acidcoated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 438:227–234

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    CAS  Google Scholar 

  • Morrison SJ, Metzler DR, Dwyer BP (2002) Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. J Contam Hydrol 56:99

    CAS  Google Scholar 

  • Moura CP, Vidal CB, Barros AL, Costa LS, Vasconcellos LCG, Dias FS et al (2011) Adsorption of BTX (benzene, toluene, o-xylene, and p-xylene) from aqueous solutions by modified periodic mesoporous organosilica. J Colloid Interface Sci 363(2):626–634. https://doi.org/10.1016/j.jcis.2011.07.054

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2009) Nanotechnology developments for the environment sector—report of the Observatory NANO EU FP7 project

    Google Scholar 

  • Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6:395–400

    CAS  Google Scholar 

  • Mustafa G, Tahir H, Sultan M, Akhtar N (2013) Synthesis and characterization of cupric oxide (CuO) nanoparticles and their application for the removal of dyes. Afr J Biotechnol 12:6650–6660

    Google Scholar 

  • Nag S, Pramanik A, Chattopadhyay D, Bhattacharyya M (2018) Green-fabrication of gold nanomaterials using Staphylococcus warneri from Sundarbans estuary: an effective recyclable nanocatalyst for degrading nitro aromatic pollutants. Environ Sci Pollut Res 25:2331–2349

    CAS  Google Scholar 

  • Naja G, Halasz A, Thiboutot S, Ampleman G, Hawari J (2008) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles. Environ Sci Technol 42(12):4364–4370

    CAS  Google Scholar 

  • Nakataa K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photchem Rev 13:169–189

    Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5:452

    CAS  Google Scholar 

  • Naraginti S, Sivakumar A (2014) Spectrochim Acta A Mol Biomol Spectrosc:128. https://doi.org/10.1016/j.saa.2014.02.083

  • Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189:519–525

    CAS  Google Scholar 

  • Narayanan K, Sakthivel N (2013) Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum. World J Microbiol Biotechnol 29:2207

    CAS  Google Scholar 

  • Nehru K, Sivakumar M (2012) Biosynthesis of Ag nanoparticles using Amaranthus tristis extract for the fabrication of nanoparticle embedded PVA membrane. Curr Nanosci 8:703–708

    Google Scholar 

  • Newkome GR, Yao Z-Q, Baker GR, Gupta VK (1985) Cascade molecules: a new approach to micelles. J Org Chem 50(11):2003–2004

    CAS  Google Scholar 

  • Neyaz N, Siddiqui WA, Nair KK (2014) Application of surface functionalized iron oxide nanomaterials as a nanosorbents in extraction of toxic heavy metals from ground water: a review. Int J Environ Sci 4:472–483

    CAS  Google Scholar 

  • Ngah WW, Fatinathan S (2010) Pb(II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies. J Environ Sci 22:338–346

    CAS  Google Scholar 

  • Nie YC, Yu F, Wang LC, Xing QJ, Liu X, Pei Y, Zou JP, Dai WL, Li Y, Suib SL (2018) Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism. Appl Catal B 227:312–321

    CAS  Google Scholar 

  • Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480

    CAS  Google Scholar 

  • Nomura A, Jones CW (2013) Amine-functionalized porous silicas as adsorbents for aldehyde abatement. ACS Appl Mater Interfaces 5(12):5569–5577. https://doi.org/10.1021/am400810s

    Article  CAS  Google Scholar 

  • Nowack B (2008) In: Krug H (ed) Nanotechnology. Wiley-VCS Verlag GmbH & Co, Weinheim, pp 1–15

    Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Tech 39(5):1221–1230

    CAS  Google Scholar 

  • Okachi T, Onaka M (2004) Formaldehyde encapsulated in zeolite: a long-lived, highly activated one-carbon electrophile to carbonyl-ene reactions. J Am Chem Soc 126(8):23062307. https://doi.org/10.1021/ja039737p

    Article  CAS  Google Scholar 

  • Okhovat N, Hashemi M, Golpayegani AA (2015) Photocatalytic decomposition of Metronidazolein aqueous solutions using titanium dioxide nanoparticles. J Mater Environ Sci 6(3):792–799

    CAS  Google Scholar 

  • Oliveira LC, Petkowicz DI, Smaniotto A, Pergher SB (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38:3699–3704

    CAS  Google Scholar 

  • Ong YT, Ahmad AL, Zein SHS, Tan SH (2010) A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz J Chem Eng 27:227–242

    CAS  Google Scholar 

  • Ottaviani MF, Favuzza P, Bigazzi M, Turro NJ, Jockusch S, Tomalia DA (2000) A TEM and EPR investigation of the competitive binding of uranyl ions to starburst dendrimers and liposomes: potential use of dendrimers as uranyl ion sponges. Langmuir 16:7368–7372

    CAS  Google Scholar 

  • Pan G, Li L, Zhao D, Chen H (2010) Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils. Environ Pollut 158:35–40

    CAS  Google Scholar 

  • Pandey P, Datta M, Malhotra BD (2008) Prospects of nanomaterials in biosensors. Anal Lett 41:159–209

    CAS  Google Scholar 

  • Pant B, Pant HR, Barakat NA, Park M, Han TH, Lim BH, Kim HY (2014) Incorporation of cadmium sulfide nanoparticles on the cadmium titanate nanofibers for enhanced organic dye degradation and hydrogen release. Ceram Int 40:1553–1559

    CAS  Google Scholar 

  • Pardeshi SK, Patil AB (2009) Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. J Hazard Mater 163(1):403–409

    CAS  Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69

    CAS  Google Scholar 

  • Parveen F, Sannakki B, Mandke MV, Pathan HM (2016) Solar Energy Mater Solar Cells 144:371. https://doi.org/10.1016/j.solmat.2015.08.033188

    Article  CAS  Google Scholar 

  • Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59:399–403

    CAS  Google Scholar 

  • Peng C, Zhang J, Xiong Z, Zhao B, Liu P (2015) Fabrication of porous hollow g-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropor Mesopor Mater 215:133–142

    CAS  Google Scholar 

  • Peng Y, Zhao M, Chen B, Zhang Z, Huang Y, Dai F, Zhuangchai L, Xiaoya C, Chaoliang T, Zhang H (2018) Hybridization of MOFs and COFs: a new strategy for construction of MOF@ COF core–shell hybrid materials. Adv Mater 30:1705454

    Google Scholar 

  • Pivetz BE (2001) Phytoremediation of contaminated soil and ground water at hazardous waste sites. Environmental Research Services Corporation. EPA/540/S 01/500

    Google Scholar 

  • Pokhrel D, Viraraghavan T (2009) Biological filtration for removal of arsenic from drinking water. J Environ Manage 90:1956–1961

    CAS  Google Scholar 

  • Pol R, Guerrero M, García-Lecina A, Altube A, Rossinyol E, Garroni S, Pellicer E (2016) Ni-, Pt-and (Ni/Pt)doped TiO2 nanophotocatalysts: a smart approach for sustainable degradation of Rhodamine B dye. Appl Catal B 181:270–278

    CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscalezero-valentiron. Environ Sci Technol 34(12):2564–2569

    CAS  Google Scholar 

  • Pradeep T (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517(24):6441–6478

    CAS  Google Scholar 

  • Prasad K, Jha AK (2009) Nat Sci 1:129

    CAS  Google Scholar 

  • Prasse C, Ternes T (2010) Removal of organic and inorganic pollutants and pathogens from wastewater and drinking water using nanoparticles—a review. Nanoparticles in the water cycle. Springer, Berlin

    Google Scholar 

  • Prokop G, Schamann M, Edelgaard I (2000) Management of contaminated sites in Western Europe. European Environment Agency, Copenhagen

    Google Scholar 

  • Qi L, Xu Z (2004) Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids Surf A 251:183–190

    CAS  Google Scholar 

  • Qiang Y, Sharma A, Paszczynski A, Meyer D (2007) Conjugates of magnetic nanoparticle-enzyme for bioremediation. In: Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, vol 4, pp 656–659

    Google Scholar 

  • Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Chen C (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619

    CAS  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    CAS  Google Scholar 

  • Quan X, Yang S, Ruan X, Zhao H (2005) Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol 39(10):3770–3775

    CAS  Google Scholar 

  • Raj R, Dalei K, Chakraborty J, Das S (2016) Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 462:166–175

    CAS  Google Scholar 

  • Rajendran P, Gunasekaran P (2007) Nanotechnology for bioremediation of heavy metals. In: Environmental bioremediation technologies 2007. Springer, Berlin, pp 211–221

    Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agribiol Res 2:48–57

    CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2014) Int Nano Lett 4:1

    Google Scholar 

  • Raliya R, Rathore I, Tarafdar JC (2013) Development of microbial nanofactory for zinc, magnesium, and titanium nanoparticles production using soil fungi. J Bionanosci 7:59

    Google Scholar 

  • Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    CAS  Google Scholar 

  • Rao Kotte M, Kuvarega AT, Cho M, Mamba BB, Diallo MS (2015) Mixed matrix PVDF membranes with in situ synthesized PAMAM dendrimer-like particles: a new class of sorbents for Cu(II) recovery from aqueous solutions by ultrafiltration. Environ Sci Technol 49:9431–9442

    Google Scholar 

  • Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110:5332–5365

    CAS  Google Scholar 

  • Reddy KR, Adams JA (2010) Sustainable remediation of contaminated sites. Momentum Press, New York, NY

    Google Scholar 

  • Reddy KR, Khodadoust AP, Darko-Kagya K (2014) Transport and reactivity of lactate-modified nanoscale iron particles for remediation of DNT in subsurface soils. J Environ Eng 140(12):04014042. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000870

    Article  CAS  Google Scholar 

  • Rickerby D, Morrison M (2007) Workshop on Nanotechnologies for Environmental Remediation, JRC Ispra

    Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  • Rychoudhury T, Scheytt T (2013) Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review. Water Sci Technol 68:1425–1439

    Google Scholar 

  • Ryu A, Jeong SW, Jang A, Choi H (2011) Reduction of highly concentrated nitrate using nanoscale zero-valent iron: effects of aggregation and catalyst on reactivity. Appl Catal B 105(1):128–135

    CAS  Google Scholar 

  • Sadowski Z (2010) Biosynthesis and applications of silver and gold nanoparticles. In: Perez DP (ed) Silver nanoparticles. InTech, Croatia, pp 257–276. https://doi.org/10.5772/8508

    Chapter  Google Scholar 

  • Saha S, Sarkar P (2012) Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. J Hazard Mater 227–228:68–78

    Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    CAS  Google Scholar 

  • Saleh TA, Gondal MA, Drmosh QA, Yamani ZH, Al-Yamani A (2011) Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nanoparticles on multiwall carbon nanotubes. Chem Eng J 166:407–412

    CAS  Google Scholar 

  • Salvadori MR, Ando RA, Nascimento CAO, Corrêa B (2014) PLos One 9:e87968

    Google Scholar 

  • Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D (2015) Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater. https://doi.org/10.1155/2015/136765

  • Sanna V, Pala N, Alzari V, Nuvoli D, Carcelli M (2016) ZnO nanoparticles with high degradation efficiency of organic dyes under sunlight irradiation. Mater Lett 162:257–260

    CAS  Google Scholar 

  • Santornchot P, Satapanajaru T, Comfort SD (2010) Application of nano-zero valent iron for treating metolachlor in aqueous solution. World Acad Sci Eng Technol 48:625–628

    Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B Biointerfaces 77:214

    CAS  Google Scholar 

  • Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Pollut 192(1– 4):349–359

    CAS  Google Scholar 

  • Sathishkumar P, Mangalaraja RV, Anandan S, Ashokkumar M (2013) Photocatalytic degradation of ternary dye mixture in aqueous environment using gold nanoparticles loaded amino and mercapto functionalized TiMCM-41 nanocatalysts in the presence of visible light. Sep Purif Technol 102:67–74

    CAS  Google Scholar 

  • Sayles GD, You G, Wang M, Kupferle MJ (1997) DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31(12):3448–3454

    CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14(12):5140–5147

    CAS  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Deliveryvehiclesforzerovalentmetalnanoparticlesinsoiland groundwater. Chem Mater 16(11):2187–2193

    CAS  Google Scholar 

  • Seteni B, Ngila JC, Sikhwivhilu K, Moutloali RM, Mamba B (2013) Dechlorination of 3, 3′, 4, 4 ′-tetrachlorobiphenyl (PCB77) in water, by nickel/iron nanoparticles immobilized on L-lysine/PAA/PVDF membrane. Phys Chem Earth 66:60–67

    Google Scholar 

  • Sevougian SD, Steefel CI, Yabusaki SB (1994) Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling, in situ remediation: scientific basis for current and future technologies. In: Proceedings of the 33rd Hanford symposium on health and the environment. Battelle Press, Columbus, OH, Pasco, Forum (Wash), pp 1–28

    Google Scholar 

  • Shaari N, Tan SH, Mohamed AR (2012) Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation. J Rare Earths 30:651–658

    CAS  Google Scholar 

  • Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172(1):258–266

    CAS  Google Scholar 

  • Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71(8):4497–4502

    CAS  Google Scholar 

  • Shao L, Yao Y, Quan S, Wei H, Wang R, Guo Z (2014) Onepot in situ synthesized TiO2/layered double hydroxides (LDHs) composites toward environmental remediation. Mater Lett 114:111–114

    CAS  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage 210:10–22

    CAS  Google Scholar 

  • Shi L, Du J, Chen Z, Megharaj M, Naidu R (2013) Functional kaolinite supported Fe/Ni nanoparticles for simultaneous catalytic remediation of mixed contaminants (lead and nitrate) from wastewater. J Colloid Interface Sci 428:302–307

    Google Scholar 

  • Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10:1–8

    Google Scholar 

  • Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1:18–52

    CAS  Google Scholar 

  • Shourian M, Noghabi KA, Zahiri HS, Bagheri T, Karbalaei R, Mollaei M, Rad I, Ahadi S, Raheb J, Abbasi H (2009) Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination 246(1-3):577–594

    CAS  Google Scholar 

  • Silva-De Hoyos LE, Sánchez-Mendieta V, CamachoLópez MA, Trujillo-Reyes J, Vilchis-Nestor AR (2018) Plasmonic and fluorescent sensors of metal ions in water based on biogenic gold nanoparticles. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2018.02.016

  • Simonton S, Dimsha M, Thomson B, Barton LL, Cathey G (2000) Long-term stability of metals immobilized by microbial reduction. In: Proceedings of the 2000 conference on hazardous waste research: environmental challenges and solutions to resource development, production and use, Southeast Denver, CO, pp 394–403

    Google Scholar 

  • Singh R, Misra V, Singh RP (2012) Removal of hexavalent chromium from contaminated ground water using zerovalent iron nanoparticles. Environ Monit Assess 184:3643–3651

    CAS  Google Scholar 

  • Sinha T, Ahmaruzzaman M (2015) Green synthesis of copper nanoparticles for the efficient removal (degradation) of dye from aqueous phase. Environ Sci Pollut Res 22(24):20092–20100

    CAS  Google Scholar 

  • Sinha AK, Suzuki K (2007) Novel mesoporous chromium oxide for VOCs elimination. Appl Catal B Environ 70(1):417–422. https://doi.org/10.1016/j.apcatb.2005.10.035

    Article  CAS  Google Scholar 

  • Siva S, Sameem SM, Sudharsan S, Kannan RS (2013) Synthesis, characterization and application of zero-valent silver nano adsorbents. Int J Innov Res Sci Eng Technol 2:8023–8037

    Google Scholar 

  • Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379(1):131–137

    CAS  Google Scholar 

  • Solsona B, García T, Sanchis R, Soriano MD, Moreno M, Rodríguez-Castellón E et al (2016) Total oxidation of VOCs on mesoporous iron oxide catalysts: soft chemistry route versus hard template method. Chem Eng J 290:273281. https://doi.org/10.1016/j.cej.2015.12.109

    Article  CAS  Google Scholar 

  • Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI et al (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269(2):160–169. https://doi.org/10.1016/j.tox.2009.12.012

    Article  CAS  Google Scholar 

  • Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39(16):6237–6245

    CAS  Google Scholar 

  • Soni N, Prakash S (2012a) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110(1):175–184

    Google Scholar 

  • Soni N, Prakash S (2012b) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol 2:1–7

    Google Scholar 

  • Soni N, Prakash S (2012c) Fungal-mediated nano silver: an effective adulticide against mosquito. Parasitol Res 111:2091

    Google Scholar 

  • Soni N, Prakash S (2014) Microbial synthesis of spherical nanosilver and nanogold for mosquito control. Ann Microbiol 64(3):1099–1111

    CAS  Google Scholar 

  • Soni N, Prakash S (2015) Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. Parasitol Res 114(3):1023–1030

    Google Scholar 

  • Soomro RA, Nafady A (2015) Catalytic reductive degradation of methyl orange using air resilient copper nanostructures. J Nanomater 2015:120

    Google Scholar 

  • Srivastava NK, Majumdar CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151:1–8

    CAS  Google Scholar 

  • Srivastava S, Thakur IS (2006) Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol Biochem 38(7):1904–1911

    CAS  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011a) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    CAS  Google Scholar 

  • Srivastava S, Shrivastava M, Suprasanna P, D’Souza SF (2011b) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37:1937–1194

    Google Scholar 

  • Srivastava V, Gusain D, Sharma YC (2013) Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram Int 39(8):9803–9808

    CAS  Google Scholar 

  • Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52

    CAS  Google Scholar 

  • Steed VS, Suidan MT, Gupta M, Miyahara T, Acheson CM, Sayles GD (2000) Development of a sulfate-reducing biological process to remove heavy metals from acid mine drainage. Water Environ Res 72:530–535

    CAS  Google Scholar 

  • Subramanyam SG, Siva K (2016) Int J Life Sci Res 4:69

    Google Scholar 

  • Suman AK, Gera M, Jain VK (2015) A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ Technol 36:706–714

    CAS  Google Scholar 

  • Suvith VS, Philip D (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta A 118:526–532

    CAS  Google Scholar 

  • Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31:4157–4170

    CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of international conference on precision engineering (ICPE), Tokyo, Japan, pp 18–23

    Google Scholar 

  • Tarafdar A, Raliya R, Wang W-N, Biswas P, Tarafdar J (2013) Green synthesis of TiO2 nanoparticle using Aspergillus tubingensis. Adv Sci Eng Med 5:943

    CAS  Google Scholar 

  • Tayeb AM, Tony MA, Ismaeel EK (2019) Engineered nanostructured ZnO for water remediation: operational parameters effect, Box–Behnken design optimization and kinetic determinations. Appl Water Sci 9:43. https://doi.org/10.1007/s13201-019-0921-0

    Article  CAS  Google Scholar 

  • Thome A, Reddy KR, Reginatto C, Cecchin I (2015a) Review of nanotechnology forsoil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut 226(4):1–20. https://doi.org/10.1007/s11270-014-2243-z

    Article  CAS  Google Scholar 

  • Thome A, Reddy KR, Reginatto C, Cecchin I (2015b) Water Air Soil Pollut 226:1e20

    Google Scholar 

  • Tisa F, Raman AAA, Daud WMAW (2014) Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review. J Environ Manage 146:260–275

    CAS  Google Scholar 

  • Tomalia DA, Baker H, Dewald J et al (1984) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132

    Google Scholar 

  • Tong M, Yuan S, Long H, Zheng M, Wang L, Chen J (2011) Reduction of nitrobenzene in groundwater by iron nanoparticles immobilized in PEG/nylon membrane. J Contam Hydrol 122:16–25

    CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Google Scholar 

  • Tripathi V, Fraceto LF, Abhilas PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-microbe-pollutant and climate nexus. Ecol Eng 82:330

    Google Scholar 

  • Tripathi S, Sanjeevi R, Anuradha J, Chauhan DS, Rathoure AK (2018) Nano-bioremediation: nanotechnology and bioremediation. In: Biostimulation remediation technologies for groundwater contaminants. IGI Global, pp 202–219

    Google Scholar 

  • Tungittiplakorn W, Lion LW, Cohen C, Kim J-Y (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38(5):1605–1610

    CAS  Google Scholar 

  • Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39(5):1354–1358

    CAS  Google Scholar 

  • Turner RJ (2017) Metal-based antimicrobial strategies. J Microbial Biotechnol 10(5):1062–1065

    Google Scholar 

  • Umer A, Naveed S, Ramzan N (2012) World Sci Publ Company 7:18

    Google Scholar 

  • Undre SB, Singh M, Kale RK (2013a) Interaction behaviour of trimesoylchloride derived 1st tier dendrimers determined with structural and physicochemical properties required for drug designing. J Mol Liq 182:106–120

    CAS  Google Scholar 

  • Undre SB, Singh M, Kale RK, Rizwan M (2013b) Silibinin binding and release activities moderated by interstices of trimesoyl, tridimethyl, and tridiethyl malonate first-tier dendrimers. J Appl Polym Sci 130:3537–3554

    CAS  Google Scholar 

  • Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66:1031–1038

    CAS  Google Scholar 

  • Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93

    CAS  Google Scholar 

  • Varshney R, Seema B, Gaur MS, Pasricha R (2010) J Metals 62(102):187

    Google Scholar 

  • Varshney G, Kanel SR, Kempisty DM, Varshney V, Agrawal A, Sahle-Demessie E, Nadagouda MN (2016) Nanoscale TiO2 films and their application in remediation of organic pollutants. Coord Chem Rev 306:43–64

    CAS  Google Scholar 

  • Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O (eds) (2007) Nanostructures in environmental pollution detection, monitoring, and remediation, Vol. 8. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Vasudevan V, Gayathri KV, Krishnan ME (2018) Bioremediation of a pentacyclic PAH, Dibenz (a, h) Anthracene—a long road to trip with bacteria, fungi, autotrophic eukaryotes and surprises. Chemosphere 202:387–399

    CAS  Google Scholar 

  • Vidal CB, Raulino GSC, Barros AL, Lima ACA, Ribeiro JP, Pires MJR et al (2012) BTEX removal from aqueous solutions by HDTMA-modified Y zeolite. J Environ Manage 112:178–185. https://doi.org/10.1016/j.jenvman.2012.07.026

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    CAS  Google Scholar 

  • Vinuth M, Naik HSB, Manjanna J (2015) Remediation of hexavalent chromium from aqueous solution using clay mineral Fe (II)–montmorillonite: encompassing anion exclusion impact. Appl Surf Sci 357:1244–1250

    CAS  Google Scholar 

  • VishnuKirthi A, AbdulRahuman G, Rajakumar S, Marimuthu T, Santhoshkumar C, Jayaseelan G, Elango A, AbduzZahir C, Kamarajbagawan A (2011) Mater Lett 65:2745

    Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    CAS  Google Scholar 

  • Vyas SP, Khar RK (2004) Targeted and controlled drug delivery—novel carrier systems, 1st edn. CBS Publication, New Delhi, p 331

    Google Scholar 

  • Wang CT (2007) Photocatalytic activity of nanoparticle gold/iron oxide aerogels for azo dye degradation. J Non-Cryst Solids 353:1126–1133

    CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Google Scholar 

  • Wang C-B, Zhang W-X (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    CAS  Google Scholar 

  • Wang Y, Yang F, Yang X (2010) Colorimetric detection of mercury (II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl Mater Interfaces 2:339–342

    CAS  Google Scholar 

  • Wang S, Sun H, Ang HM, Tade ´ MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347. https://doi.org/10.1016/j.cej.2013.04.070

    Article  CAS  Google Scholar 

  • Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ 466–467:210–213

    Google Scholar 

  • Wang AN, Teng Y, Hu XF, Wu LH, Huang YJ, Luo YM, Christie P (2016) Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: degradation pathway, optimization of operating parameters and effects of soil properties. Sci Total Environ 541:348–355

    CAS  Google Scholar 

  • Wang D, Pillai SC, Ho S-H, Zeng J, Li Y, Dionysiou DD (2018) Plasmonic-based nanomaterials for environmental remediation. Appl Catal Environ 237:721–741. https://doi.org/10.1016/j.apcatb.2018.05.094

    Article  CAS  Google Scholar 

  • Wei YT, Wu SC, Yang SW, Che CH, Lien HL, Huang D (2012a) Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater 211–212(211–212):373–380

    Google Scholar 

  • Wei YT, Wu SC, Yang SW, Che CH, Lien HL, Huang DH (2012b) Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater 211:373–380

    Google Scholar 

  • Wei W, Liu D, Wei Z, Zhu Y (2016) Short-range π–π stacking assembly on P25 TiO2 nanoparticles for enhanced visible-light photocatalysis. ACS Catal 7:652–663

    Google Scholar 

  • Welser K, Adsley R, Moore BM, Chan WC, Aylott JW (2011) Protease sensing with nanoparticle based platforms. Analyst 136:29–41

    CAS  Google Scholar 

  • Wen M, Zhang S, Dai W, Li G, Zhang D (2015) In situ synthesis of Ti3+ self-doped mesoporous TiO2 as a durable photocatalyst for environmental remediation. Chin J Catal 36:2095–2102

    CAS  Google Scholar 

  • de Windt W, Aelterman P, Verstraete W (2005) Bioreductive depositionofpalladium(0)nanoparticlesonShewanellaoneidensis with catalytic activity towards reductive dechlorination ofpolychlorinatedbiphenyls. Environ Microbiol 7(3):314–325

    Google Scholar 

  • Wu F, Sheng DN, Hua HL (2000) Chemosphere 41:1233–1238

    CAS  Google Scholar 

  • Xia S, Song Z, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, Bolan N, Wang H (2019) A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit Rev Environ Sci Technol 49(12):1027–1078

    CAS  Google Scholar 

  • Xiong Z, He F, Zhao D, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43:5171–5179

    CAS  Google Scholar 

  • Xiong T, Yuan X, Wang H, Leng L, Li H, Wu Z et al (2018) Implication of graphene oxide in Cdcontaminated soil: a case study of bacterial communities. J Environ Manage 205:99106. https://doi.org/10.1016/j.jenvman.2017.09.067.

    Article  Google Scholar 

  • Xu J-C, Mei L, Guo X-Y, Li H-U (2005) Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. J Mol Catal A Chem 226:123–127

    CAS  Google Scholar 

  • Xu Z, Xie Q, Shuo C, Zhao H, Yu L (2007) Photocatalytic remediation of γ-hexachlorocyclohexane contaminated soils using TiO2 and montmorillonite composite photocatalyst. J Environ Sci 19:358–361

    Google Scholar 

  • Yadav KK (2017) J Mater Environ Sci 8:740

    CAS  Google Scholar 

  • Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757

    CAS  Google Scholar 

  • Yadav D, Kumar P, Kapur M, Mondal MK (2018) Environ Prog Sustain Energy. https://doi.org/10.1002/ep.12920

  • Yan W, Lien H-L, Koel BE, Zhang W-X (2013) Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environ Sci Process Impacts 15(1):63–77. https://doi.org/10.1039/C2EM30691C

    Article  CAS  Google Scholar 

  • Yana L, Yina H, Zhang S, Lenga F, Nana W, Li H (2010) Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. J Hazard Mater 178:209–217

    Google Scholar 

  • Yang S, Hu J, Chen C, Shao D, Wang X (2011) Mutual effects of Pb (II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ Sci Technol 45:3621–3627

    CAS  Google Scholar 

  • Yu CWF, Jeong Tai K (2010) Building pathology, investigation of sick buildings—VOC emissions. Indoor Built Environ 19(1):3039. https://doi.org/10.1177/1420326X09358799

    Article  CAS  Google Scholar 

  • Yu CWF, Kim JT (2012) Photocatalytic oxidation for maintenance of indoor environmental quality. Indoor Built Environ 22(1):3951. https://doi.org/10.1177/1420326X12470282

    Article  CAS  Google Scholar 

  • Yuan S, Long H, Xie W, Liao P, Tong M (2012) Electrokinetic transport of CMC-stabilized Pd/Fe nanoparticles for the remediation of PCP-contaminated soil. Geoderma 185:18–25

    Google Scholar 

  • Yunus IS, Harwin, Kurniawan A, Adityawarman D, Indarto A (2012) Nanotechnologies in water and air pollution treatment. Environ Technol Rev 1(1):136148. https://doi.org/10.1080/21622515.2012.733966

    Article  CAS  Google Scholar 

  • Zare K, Sadegh H, Shahryari-ghoshekandi R, Asif M, Tyagi I, Agarwal S, Gupta VK (2016) Equilibrium and kinetic study of ammonium ion adsorption by Fe3O4 nanoparticles from aqueous solutions. J Mol Liq 213:345–350

    CAS  Google Scholar 

  • Zeng S, Weng X, Tong Y, Lin W, Chen Z (2015) Simultaneous removal of Pb (II) and Cd (II) from aqueous solution by green synthesized iron nanoparticles. Acta Sci Circumst 35:3538

    CAS  Google Scholar 

  • Zhang W-X (2003a) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323

    CAS  Google Scholar 

  • Zhang W (2003b) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    CAS  Google Scholar 

  • Zhang W-X (2009) Soy protein and/or soy derivatives with zero-valent iron compositions and use for environmental remediation. U.S. Patent # US, 7(507) 345 B2

    Google Scholar 

  • Zhang S, Cheng F, Tao Z, Gao F, Chen J (2006) Removal of nickel ions from wastewater by Mg(OH)2/MgO nanostructures embedded in Al2O3 membranes. J Alloys Compd 426:281–285

    CAS  Google Scholar 

  • Zhang Z, Wang J, Liu D, Luo W, Zhang M, Jiang W, Zhu Y (2016) Highly efficient organic photocatalyst with full visible light spectrum through π–π stacking of TCNQ–PTCDI. ACS Appl Mater Interfaces 8:30225–30231

    CAS  Google Scholar 

  • Zhang W, Lo Irene MC, Hu L, Voon CP, Lim BL, Versaw WK (2018) Environ Sci Technol 52:4385. https://doi.org/10.1021/acs.est.7b06697

    Article  CAS  Google Scholar 

  • Zhao J, Wang L (2011) Degradation of Rhodamine B in aqueous solution by the UV/ZnO photocatalytic process. In: 2011 international conference on materials for renewable energy and environment

    Google Scholar 

  • Zhou H, Fan T, Han T, Li X, Ding J, Zhang D, Ogawa H (2009) Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties. Nanotechnology 20(8):085603

    Google Scholar 

  • Zhou L, Jin J, Liu Z, Liang X, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediaminemodified magnetic chitosan nanoparticles. J Hazard Mater 185:1045–1052

    CAS  Google Scholar 

  • Zhou Y, Zhao H, Li C, He P, Peng W, Yuan L, Zeng L, He Y (2012) Colorimetric detection of Mn2+ using silver nanoparticles cofunctionalized with 4-mercaptobenzoic acid and melamine as a probe. Talanta 97:331–335

    CAS  Google Scholar 

  • Zhu L, Jacob DJ, Keutsch FN, Mickley LJ, Scheffe R, Strum M et al (2017) Formaldehyde (HCHO) as a hazardous air pollutant: mapping surface air concentrations from satellite and inferring cancer risks in the United States. Environ Sci Technol 51(10):5650–5657. https://doi.org/10.1021/acs.est.7b01356

    Article  CAS  Google Scholar 

  • Zietz BP, Dieter HH, Lakomek M, Schneider H, Keßler-Gaedtke B, Dunkelberg H (2003) Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply. Sci Total Environ 302:127–144

    CAS  Google Scholar 

  • Zou L, Luo Y, Hooper M, Hu E (2006) Removal of VOCs by photocatalysis process using adsorption enhanced TiO2SiO2 catalyst. Chem Eng Process Process Intensif 45(11):959–964. https://doi.org/10.1016/j.cep.2006.01.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express gratitude to Indian Institute of Technology Bombay for infrastructural and academic support.

Conflict of Interests: The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinti Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, E., Osmani, R.A.M., Banerjee, R. (2020). Nanobioremediation: An Emerging Approach for a Cleaner Environment. In: Shah, M. (eds) Microbial Bioremediation & Biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_12

Download citation

Publish with us

Policies and ethics