Skip to main content

Zebrafish: A Laboratory Model to Evaluate Nanoparticle Toxicity

  • Chapter
  • First Online:
Model Organisms to Study Biological Activities and Toxicity of Nanoparticles

Abstract

Presently, nanoparticles (NPs) technology is a booming business marked by a significantly fast growth rate that covers a wide range of industries. NPs demand increases and they have a potential market value. The nanotoxicity sector has grown significantly for the last 10–15 years, which will pose serious problems in the coming future. Nano-toxicology is an innovative area of toxicological study that assesses the toxicological assets of NPs to decide whether they constitute a risk or an ecological problem and to what degree. To assess the different NPs toxicity, numerous nanotoxicological studies were piloted using different methods. The vital mechanisms of nanomaterial toxicity were recently studied especially in aquatic wildlife. In recent years, nanoparticle toxicity evaluation amplified exponentially by using zebrafish as an animal prototypical system. Zebrafish has been tested as an established model system for experimental biological study and are evolving as a solid nanotoxicity prototype which is progressively used as an in vivo model. It is principally used as a platform for rapid testing and assortment of molecules in the object or phenotype techniques. It offers a number of advantages over other living prototypes by offering prospects to speedily screen nanoparticulate medicines beneath in-vivo environments, also an economical way to link the present gap among in vitro and vertebrate studies. Many researchers have summarized experimental parameters critically used by zebrafish as an animal model for biomedical tests such as sample size, organ, and type wild against transgenic lines. Current chapter will discuss considerable factors of experimentation, advantages, and usage of zebrafish in nanomedicine; different methods of evaluating the nanotoxicity such as hatching exploration; malformation of embryos and organs of development; genetically modified zebrafish by means of living biosensor; disturbance in the endocrine system, skin, and gill; reproductive toxicity; genotoxicity; neurotoxicity; immune-toxicity; and behavioral analysis. Furthermore, it will also discuss an overview of studies about investigation of the toxicity of silver, carbon nanotube, metal oxide, and quantum dots nanoparticles using zebrafish. At the end, future lookouts of zebrafish model are discussed. It is projected that this chapter will update study directed at emerging biocompatible nanoparticulates for a choice of uses and toxicity investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali S, Champagne DL, Spaink HP, Richardson MK (2011) Zebrafish embryos and larvae: a new generation of disease models and drug screens. Birth Defects Res C Embryo Today 93:115–133

    Article  CAS  PubMed  Google Scholar 

  • Ali-Boucetta H, Al-Jamal KT, Kostarelos K (2011) Cytotoxic assessment of carbon nanotube interaction with cell cultures. Methods Mol Biol 726:299–312

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S (2008a) Toxicity of silver nanoparticles in zebrafish models. Nanotechnol 19:255102

    Google Scholar 

  • Asharani PV, Serina NG, Nurmawati MH, Wu YL, Gong Z, Valiyaveettil S (2008b) Impact of multi-walled carbon nanotubes on aquatic species. J Nanosci Nanotechnol 8:3603–3609

    Article  CAS  PubMed  Google Scholar 

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910

    Article  CAS  PubMed  Google Scholar 

  • Beasley A, Elrod-Erickson M, Otter RR (2012) Consistency of morphological endpoints used to assess developmental timing in zebrafish (Danio rerio) across a temperature gradient. Reprod Toxicol 34:561–567

    Article  CAS  PubMed  Google Scholar 

  • Beliaeva NF, Kashirtseva VN, Medvedeva NV, Khudoklinova I, Ipatova OM, Archakov AI (2010) Zebrafish as a model organism for biomedical studies. Biomed Khim 56:120–131

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva NF, Kashirtseva VN, Medvedeva NV, Khudoklinova YY, Ipatova OM, Archakov AI (2009) Zebrafish as a model system for biomedical studies: review. Biochem (moscow) Suppl Ser B Biomed Chem 3(4):343–350

    Article  Google Scholar 

  • Bohnsack JP, Assemi S, Miller JD, Furgeson DY (2012) The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebra fish nanotoxicology model. In: Reineke J (ed) Nanotoxicity: methods and protocols, methods in molecular biology, vol 926. Springer Science Business Media, LLC, New York, pp 261–316

    Chapter  Google Scholar 

  • Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res 543:251–272

    Article  CAS  PubMed  Google Scholar 

  • Braunbeck T, Bottcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the fish embryo toxicity test goes multi-species—An Update. ALTEX 22(2/05):87–102

    PubMed  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  CAS  PubMed  Google Scholar 

  • Busquet F, Nagel R, Landenberg FV, Mueller SO, Huebler N, Broschard TH (2008) Development of a new screening assay to identify proteratogenic substances using zebrafish Danio rerio embryo combined with an exogenous mammalian metabolic activation system (mDarT). Toxicol Sci 104(1):177–188

    Article  CAS  PubMed  Google Scholar 

  • Cambier S, Gonzalez P, Durrieu G, Bourdineaud JP (2010) Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicol Environ Saf 73:312–319

    Article  CAS  PubMed  Google Scholar 

  • Campbell F, Bos FL, Sieber S, Arias-Alpizar G, Koch BE, Huwyler J, Kros A, Bussmann J (2018) Directing nanoparticle bio distribution through evasion and exploitation of stab2-dependent nanoparticle uptake. ACS Nano 12:2138–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cela P, Vesela B, Matalova E, Vecera Z, Buchtova M (2014) Embryonic toxicity of nanoparticles. Cells Tissues Organs 199:1–23

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Agoramoorthy G (2010) Why zebrafish? Riv Biol 103:25–27

    PubMed  Google Scholar 

  • Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G (2009) Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab 10:116–124

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Lee SS (2016) Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol 14:65

    Article  CAS  Google Scholar 

  • Chen TH, Lin CY, Tseng MC (2011) Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Mar Pollut Bull 63:303–308

    Article  CAS  PubMed  Google Scholar 

  • Dai Q, Bertleff-Zieschang N, Braunger JA, Bjornmalm M, Cortez-Jugo C, Caruso F (2018) Particle targeting in complex biological media. Adv Healthc Mater 7:1700575

    Article  CAS  Google Scholar 

  • Daroczi B, Kari G, McAleer MF, Wolf JC, Rodeck U, Dicker AP (2006) In-vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model. Clin Cancer Res 12:7086–7091

    Article  CAS  PubMed  Google Scholar 

  • Dedeh A, Ciutat A, Treguer-Delapierre M, Bourdineaud JP (2015) Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicol 9:71–80

    Google Scholar 

  • Delorme-Axford E, Guimaraes RS, Reggiori F, Klionsky DJ (2015) The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods 75:3–12

    Article  CAS  PubMed  Google Scholar 

  • Di Gioacchino M, Petrarca C, Lazzarin F, Di Giampaolo L, Sabbioni E, Boscolo P, Mariani-Costantini R, Bernardini G (2011) Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol 24:65S–71S

    Article  PubMed  Google Scholar 

  • Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Leonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97(2):79–87

    Article  CAS  PubMed  Google Scholar 

  • Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H et al (2009) Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3:3955–3962

    Article  CAS  PubMed  Google Scholar 

  • Fako VE, Furgeson DY (2009) Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 61:478–486

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Garcia M, Rodriguez JA (2007) Metal oxide nanoparticles. Encyclopedia inorganic bioinorganic chemistry. Wiley, New York, NY

    Google Scholar 

  • Foriel S, Willems P, Smeitink J, Schenck A, Beyrath J (2015) Mitochondrial diseases: Drosophila melanogaster as a model to evaluate potential therapeutics. Int J Biochem Cell Biol 63:60–65

    Article  CAS  PubMed  Google Scholar 

  • Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50

    Article  CAS  PubMed  Google Scholar 

  • Gad SC (2014) Animal models in toxicology. CRC, London, p 983

    Google Scholar 

  • Gambardella C, Gallus L, Gatti AM, Faimali M, Carbone S, Antisari LV (2014) Toxicity and transfer of metal oxide nanoparticles from microalgae to sea urchin larvae. Chem Ecol 30:308–316

    Article  CAS  Google Scholar 

  • Geffroy B, Ladhar C, Cambier S, Treguer-Delapierre M, Brethes D, Bourdineaud JP (2012) Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time. Nanotoxicol 6:144–160

    Google Scholar 

  • George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T et al (2011) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759

    Article  CAS  Google Scholar 

  • Gonalez-Moragas L, Roig A, Laromaine A (2015) C. elegans as a tool for in vivo nanoparticle assessment. Adv Colloid Interf Sci 219:10–26

    Article  CAS  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Article  CAS  PubMed  Google Scholar 

  • Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10:487–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque E, Ward AC (2018) Zebrafish as a model to evaluate nanoparticle toxicity. Nano 8(561):1–18

    Google Scholar 

  • Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity: review. Toxicol Sci 86(1):6–19

    Article  CAS  PubMed  Google Scholar 

  • Hofmann D, Tenzer S, Bannwarth MB, Messerschmidt C, Glaser SF, Schild H, Landfester K, Mailander V (2014) Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS Nano 8:10077–10088

    Article  CAS  PubMed  Google Scholar 

  • Hsu CH, Wen ZH, Lin CS, Chakraborty C (2007) The zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities. Curr Neurovasc Res 4:111–120

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhang J, Han X, Huang T (2014) The use of zebrafish (Danio rerio) behavioral responses in identifying sublethal exposures to deltamethrin. Int J Environ Res Public Health 11:3650–3660

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung KW, Suen MF, Chen YF, Cai HB, Mo ZX, Yung KK (2012) Detection of water toxicity using cytochrome P450 transgenic zebrafish as live biosensor: for polychlorinated biphenyls toxicity. Biosens Bioelectron 31:548–553

    Article  CAS  PubMed  Google Scholar 

  • Igartua DE, Azcona PL, Martinez CS, Alonso SV, Lassalle VL, Prieto MJ (2018) Folic acid magnetic nanotheranostics for delivering doxorubicin: toxicological and biocompatibility studies on zebrafish embryo and larvae. Toxicol Appl Pharmacol 358:23–34

    Article  CAS  PubMed  Google Scholar 

  • Iguchi Y, Michiue H, Kitamatsu M, Hayashi Y, Takenaka F, Nishiki T, Matsui H (2015) Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model. Biomaterials 56:10–17

    Article  CAS  PubMed  Google Scholar 

  • Jang GH, Hwang MP, Kim SY, Jang HS, Lee KH (2014) A systematic in-vivo toxicity evaluation of nanophosphor particles via zebrafish models. Biomaterials 35:440–449

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Zheng S, Fu Z (2011) Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish Shellfish Immunol 30:1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A (2016) A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif Cells Nanomed Biotechnol 44(2):471–477

    Article  CAS  PubMed  Google Scholar 

  • Kannan RR, JerleyAJA RM, Prakash VSG (2011) Antimicrobial silver nanoparticle induces organ deformities in the developing zebrafish (Danio rerio) embryos. J Biomed Sci Eng 4:248–254

    Article  CAS  Google Scholar 

  • Kari G, Rodeck U, Dicker AP (2007) Zebrafish: an emerging model system for human disease and drug discovery. Discovery 82(1):70–80

    CAS  Google Scholar 

  • Karlsson J, von Hofsten J, Olsson PE (2001) Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol 3:522–527

    Article  CAS  Google Scholar 

  • Keller JM, Escara-Wilke JF, Keller ET (2008) Heat stress-induced heat shock protein 70 expression is dependent on ERK activation in zebrafish (Danio rerio) cells. Comp Biochem Physiol A Mol Integr Physiol 150:307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • King Heiden TC, Dengler E, Kao WJ, Heideman W, Peterson RE (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79

    Article  CAS  PubMed Central  Google Scholar 

  • King-Heiden TC, Wiecinski PN, Mangham AN et al (2009) Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ Sci Technol 43(5):1605–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • KovriZnych JA, Sotnikova R, Zeljenkov A, Rollerov A, Szabova E (2014) Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio. Interdiscip Toxicol 7(1):23–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lankveld DP, Van Loveren H, Baken KA, Vandebriel RJ (2010) In-vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol 598:401–423

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Lu PN, Huang HL, Chu C, Li HP, Tsai HJ (2014) Zebrafish transgenic line huORFZ is an effective living bioindicator for detecting environmental toxicants. PLoS One 9:e90160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Jang GH, Byun CH, Jeun M, Peter-Searson C, Lee KH (2017) Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: promoting preclinical applications. Biosci Rep 37:1–13

    Google Scholar 

  • Liegertova M, Wrobel D, Herma R, Müllerova M et al (2018) Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicol 12(8):797–818

    Google Scholar 

  • Lin S, Zhao Y, Nel AE, Lin S (2013) Zebrafish: an in-vivo model for nano EHS studies. Small 9(0):1608–1618

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection imaging and drug delivery. Nano Res 2:85–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacPhail RC, Hunter DL, Irons TD, Padilla S (2011) Locomotion and behavioral toxicity in larval zebrafish: background, methods, and data. In: McGrath P (ed) Zebrafish methods assess drug safety and toxicity. Wiley, Hoboken, NJ, pp 151–164

    Chapter  Google Scholar 

  • MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14:721–731

    Article  CAS  PubMed  Google Scholar 

  • Madani SY, Mandel A, Seifalian AM (2013) A concise review of carbon nanotube’s toxicology. Nano Rev 4:21521

    Article  CAS  Google Scholar 

  • Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120(Suppl 1):S109–S129

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Lammers T, Bae YH, Schwendeman S et al (2017) Drug delivery research for the future: expanding the nano horizons and beyond. J Control Release 246:183–184

    Article  CAS  PubMed  Google Scholar 

  • Morimoto Y, Kobayashi N, Shinohara N, Myojo T, Tanaka I, Nakanishi J (2010) Hazard assessments of manufactured nanomaterials. J Occup Health 52:325–334

    Article  CAS  PubMed  Google Scholar 

  • OECD (2013) Guideline for the testing of chemicals. Fish Embryo Toxicity (FET), Paris, France

    Google Scholar 

  • Ong KJ, Zhao X, Thistle ME, Maccormack TJ, Clark RJ, Ma G, Martinez- Rubi Y, Simard B, Loo JS, Veinot JG, Goss GG (2014) Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology 8:295–304

    Article  CAS  PubMed  Google Scholar 

  • Paterson G, Ataria JM, Hoque ME, Burns DC, Metcalfe CD (2011) The toxicity of titanium dioxide nanopowder to early life stages of the Japanese medaka (Oryzias latipes). Chemosphere 82:1002–1009

    Article  CAS  PubMed  Google Scholar 

  • Paunovska K, Sago CD, Monaco C, Hudson WH, Castro MG et al (2018) A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett 18:2148–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecoraro R, D’Angelo D, Filice S, Scalese S, Capparucci F, Marino F, Iaria C, Guerriero G, Tibullo D, Scalisi EM, Salvaggio A, Nicotera I, Brundo MV (2017a) Toxicity evaluation of grapheme oxide and titania loaded nafion membranes in zebrafish. Front Physiol 8:1039

    Article  PubMed  Google Scholar 

  • Pecoraro R, Salvaggio A, Marino F, Caro GD, Capparucci F, Lombardo BM, Messina G, Scalisi EM, Tummino M, Loreto F, D’Amante G, Avola R, Tibullo D, Brundo MV (2017b) Metallic nano-composite toxicity evaluation by zebrafish embryo toxicity test with identification of specific exposure biomarkers. Curr Protoc Toxicol 74:1.14.1–1.14.13

    Article  CAS  Google Scholar 

  • Rabergh CM, Airaksinen S, Soitamo A, Bjorklund HV, Johansson T, Nikinmaa M, Sistonen L (2000) Tissue-specific expression of zebrafish (Danio rerio) heat shock factor 1 mRNAs in response to heat stress. J Exp Biol 203:1817–1824

    CAS  PubMed  Google Scholar 

  • Rennekamp AJ, Peterson RT (2015) 15 years of zebrafish chemical screening. Curr Opin Chem Biol 24:58–70

    Article  CAS  PubMed  Google Scholar 

  • Riccio EK, Pratt-Riccio LR, Bianco-Junior C, Sanchez V, Totino PR, Carvalho LJ, Daniel-Ribeiro CT (2015) Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research. Malar J 14:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roper C, Tanguay RL (2018) Chapter 12. Zebrafish as a model for developmental biology and toxicology. In: Handbook of developmental neurotoxicology. Elsevier, London, pp 143–151

    Chapter  Google Scholar 

  • Samaee SM, Rabbani S, Jovanovic B, Mohajeri-Tehrani MR, Haghpanah V (2015) Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO(2) particles in zebrafish: a comparison between two different classes of hatching-derived variables. Ecotoxicol Environ Saf 116:121–128

    Article  CAS  PubMed  Google Scholar 

  • Sassen WA, Koster RW (2015) A molecular toolbox for genetic manipulation of zebrafish. Adv Genomics Genet 5:151–163

    CAS  Google Scholar 

  • Seaton A, Tran L, Aitken R, Donaldson K (2010) Nanoparticles, human health hazard and regulation. J R Soc Interface 7(Suppl 1):S119–S129

    CAS  PubMed  Google Scholar 

  • Sheng L, Wang L, Su M, Zhao X, Hu R, Yu X, Hong J, Liu D, Xu B, Zhu Y et al (2014) Mechanism of TiO2 nanoparticle-induced neurotoxicity in zebrafish (Danio rerio). Environ Toxicol 31:163–175

    Article  CAS  PubMed  Google Scholar 

  • Sieber S, Grossen P, Detampel P, Siegfried S, Witzigmann D, Huwyler J (2017) Zebrafish as an early stage screening tool to study the systemic circulation of nanoparticulate drug delivery systems in-vivo. J Control Release 264:180–191

    Article  CAS  PubMed  Google Scholar 

  • Sieber S, Grossen P, Bussmann P, Campbell F, Kros A, Witzigmann D, Huwyler J (2019) Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 151–152:152–168

    Google Scholar 

  • Strahle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:128–132

    Article  CAS  PubMed  Google Scholar 

  • Sun YP, Cheng SH (2009) Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235:216–225

    Article  CAS  PubMed  Google Scholar 

  • Thanh NTK, Green LAW (2010) Functionalization of nanoparticles for biomedical applications. Nano Today 5:213–230

    Article  CAS  Google Scholar 

  • Thomas J, Vijayakumar S, Thanigaivel S, Mukherjee A, Chandrasekaran N (2014) Toxicity of magnesium oxide nano particles in two fresh water fishes tilapia (Oreochromis mossambicus) and zebra fish (Danio rerio). Int J Pharm Sci 6(2):487–490

    Google Scholar 

  • Truong L, Saili KS, Miller JM, Hutchison JE, Tanguay RL (2012) Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol 155:269–274

    Article  CAS  PubMed  Google Scholar 

  • Tu W, Niu L, Liu W, Xu C (2013) Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity. Ecotoxicol Environ Saf 89:189–195

    Article  CAS  PubMed  Google Scholar 

  • Vargas A, Zeisser-Labouebe M, Lange N, Gurny R, Delie FV (2007) The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliv Rev 59:1162–1176

    Article  CAS  PubMed  Google Scholar 

  • Varshney GK, Lu J, Gildea DE, Huang H, Pei W, Yang Z, Huang SC, Schoenfeld D, Pho NH, Casero D et al (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Res 23:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villamizar N, Ribas L, Piferrer F, Vera LM, Sanchez-Vazquez FJ (2012) Impact of daily thermocycles on hatching rhythms, larval performance and sex differentiation of zebrafish. PLoS One 7:e52153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhu X, Zhang X, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen Y (2011) Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO(2) nanoparticles. Chemosphere 83:461–467

    Article  CAS  PubMed  Google Scholar 

  • Weiss C, Diabate S (2011) A special issue on nanotoxicology. Arch Toxicol 85:705–706

    Article  CAS  PubMed  Google Scholar 

  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  PubMed  Google Scholar 

  • Witzigmann D, Hak S, Van der Meel R (2018) Translating nanomedicines: thinking beyond materials? A young investigator’s reply to ‘the novelty bubble’. J Control Release 290:138–140

    Article  CAS  PubMed  Google Scholar 

  • Xin Q, Rotchell JM, Cheng J, Yi J, Zhang Q (2015) Silver nanoparticles affect the neural development of zebrafish embryos. J Appl Toxicol 35:1481–1492

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Liu Y, Chen Z, Li W, Wang L, Wu X, Ji Y, Zhao Y, Ma L, Shao Y, Chen C (2012a) Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 12:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhang YL, Song C, Wu LL, Gao HW (2012b) Interactions of hydroxyapatite with proteins and its toxicological effect to zebrafish embryos development. PLoS One 7(4):e32818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Dong X, Zhang Z, Yang M, Wu X, Liu H, Lao Q, Li C (2015) Assessment of immunotoxicity of dibutyl phthalate using live zebrafish embryos. Fish Shellfish Immunol 45:286–292

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang Q, Li X, Zhan S, Wang L, Chen D (2017) The effects of copper oxide nanoparticles on dorsoventral patterning, convergent extension, and neural and cardiac development of zebrafish. Aquat Toxicol 188:130–137

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Kopp M, Babiak I, Fernandes JMO (2018) Low incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide. Sci Rep 8:4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Wang S, Wub Y, Youa H, Lina LV (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136–137:49–59

    Article  CAS  PubMed  Google Scholar 

  • Zhuang S, Zhang Z, Zhang W, Bao L, Xu C, Zhang H (2015) Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio). Aquat Toxicol 159:119–126

    Article  CAS  PubMed  Google Scholar 

  • Zon DLI, Peterson RT (2005) In-vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Changdeo Jagdale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jagdale, S.C., Hude, R.U., Chabukswar, A.R. (2020). Zebrafish: A Laboratory Model to Evaluate Nanoparticle Toxicity. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_18

Download citation

Publish with us

Policies and ethics