Skip to main content

Galectins in Host–Pathogen Interactions: Structural, Functional and Evolutionary Aspects

  • Chapter
  • First Online:
Lectin in Host Defense Against Microbial Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1204))

Abstract

Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous (“self”) carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind (“non-self”) glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a new paradigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms, which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been “subverted” by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host’s immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed H, Vasta GR (2008) Unlike mammalian GRIFIN, the zebrafish homologue (DrGRIFIN) represents a functional carbohydrate-binding galectin. Biochem Biophys Res Commun 371:350–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed H, Bianchet MA, Amzel LM, Hirabayashi J, Kasai K, Giga-Hama Y, Tohda H, Vasta GR (2002) Novel carbohydrate specificity of the 16- kDa galectin from Caenorhabditis elegans: binding to blood group precursor oligosaccharides (type 1, type 2, Talpha, and Tbeta) and gangliosides. Glycobiology 12:451–461

    Article  CAS  PubMed  Google Scholar 

  • Ahmed H, Cappello F, Rodolico V, Vasta GR (2009a) Evidence of heavy methylation in the galectin 3 promoter in early stages of prostate adenocarcinoma: development and validation of a methylated marker for early diagnosis of prostate cancer. Transl Oncol 2:146–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed H, Du SJ, Vasta GR (2009b) Knockdown of a galectin-1-like protein in zebrafish (Danio rerio) causes defects in skeletal muscle development. Glycoconj J 26(3):277–283

    Article  CAS  PubMed  Google Scholar 

  • Ahmed H, Al Sadek DM (2015) Galectin-3 as a potential target to prevent cancer metastasis. Clin Med Insights Oncol 25(9):113–121

    Google Scholar 

  • Almeida F, Wolf JM, da Silva TA, DeLeon-Rodriguez CM, Rezende CP, Pessoni AM, Fernandes FF, Silva-Rocha R, Martinez R, Rodrigues ML, Roque-Barreira MC, Casadevall A (2017) Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nat Commun 8(1):1968

    Google Scholar 

  • Bi S, Hong PW, Lee B, Baum LG (2011) Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry. Proc Natl Acad Sci USA 108:10650–10655

    Google Scholar 

  • Bianchet MA, Ahmed H, Vasta GR, Amzel LM (2000) Soluble beta-galactosyl-binding lectin (galectin) from toad ovary: crystallographic studies of two protein-sugar complexes. Proteins 40(3):378–388 PMID: 10861929

    Article  CAS  PubMed  Google Scholar 

  • Blidner AG, Mendez-Huergo SP, Cagnoni AJ, Rabinovich GA (2015) Re-wiring regulatory cell networks in immunity by galectin-glycan interactions. FEBS Lett 589:3407–3418

    Article  CAS  PubMed  Google Scholar 

  • Blois SM, Ilarregui JM, Tometten M, Garcia M, Orsal AS, Cordo-Russo R, Toscano MA, Bianco GA, Kobelt P, Handjiski B, Tirado I, Markert UR, Klapp BF, Poirier F, Szekeres-Bartho J, Rabinovich GA, Arck PC (2007) A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med 13:1450–1457

    Google Scholar 

  • Blois SM, Dveksler G, Vasta GR, Freitag N, Blanchard V, Barrientos G (2019) Pregnancy galectinology: insights into a complex network of glycan binding proteins. Front Immunol 10:1166

    Google Scholar 

  • Bourne Y, Bolgiano B, Liao DI, Strecker G, Cantau P, Herzberg O, Feizi T, Cambillau C (1994) Crosslinking of mammalian lectin (galectin-1) by complex biantennary saccharides. Nat Struct Biol 1(12):863–870

    Article  CAS  PubMed  Google Scholar 

  • Breuilh L, Vanhoutte F, Fontaine J, van Stijn CM, Tillie-Leblond I, Capron M, Faveeuw C, Jouault T, van Die I, Gosset P, Trottein F (2007) Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells. Infect Immun 75(11):5148–5157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butschi A, Titz A, Wälti MA, Olieric V, Paschinger K, Nöbauer K, Guo X, Seeberger PH, Wilson IB, Aebi M, Hengartner MO, Künzler M (2010) Caenorhabditis elegans N-glycan core beta-galactoside confers sensitivity towards nematotoxic fungal galectin CGL2. PLoS Pathog 6(1):e1000717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldararu O, Manzoni F, Oksanen E, Logan DT, Ryde U (2019) Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Acta Crystallogr D Struct Biol 75(Pt 4):368–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17:663–676

    Google Scholar 

  • Cho M, Cummings RD (1995a) Galectin-1, a β-galactoside-binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. J Biol Chem 270:5207–5212

    Article  CAS  PubMed  Google Scholar 

  • Cho M, Cummings RD (1995b) Galectin-1, a β-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J Biol Chem 270:5198–5206

    Google Scholar 

  • Cleves AE, Cooper DN, Barondes SH, Kelly RB (1996) A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol 133:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Colnot C, Ripoche M, Fowlis D, Cannon V, Scaerou F, Cooper DNW, Poirier F (1997) The role of galectins in mouse development. Trends Glycosci Glycotechnol 9:31–40

    Article  CAS  Google Scholar 

  • Colnot C, Sidhu SS, Balmain N, Poirier F (2001) Uncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones. Dev Biol 229:203–214

    Article  CAS  PubMed  Google Scholar 

  • Cooper DN (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572:209–231

    Article  CAS  PubMed  Google Scholar 

  • Craig SE, Thummel R, Ahmed H, Vasta GR, Hyde DR, Hitchcock PF (2010) The zebrafish galectin Drgal1-l2 is expressed by proliferating Müller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors. Invest Ophthalmol Vis Sci 51(6):3244–3252

    Article  PubMed  PubMed Central  Google Scholar 

  • Croci DO, Cerliani JP, Dalotto-Moreno T, Mendez-Huergo SP, Mascanfroni ID, Dergan-Dylon S, Toscano MA, Caramelo JJ, Garcia-Vallejo JJ, Ouyang J, Mesri EA, Junttila MR, Bais C, Shipp MA, Salatino M, Rabinovich GA (2014) Glycosylation-dependent lectin- receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156:744–758

    Google Scholar 

  • Cummings RD, Liu FT, Vasta GR (2015–2017) Galectins. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY) (Chapter 36)

    Google Scholar 

  • Dam TK, Brewer CF (2008) Effects of clustered epitopes in multivalent ligand-receptor interactions. Biochemistry 47:8470–8476

    Article  CAS  PubMed  Google Scholar 

  • Dam TK, Brewer CF (2010) Maintenance of cell surface glycan density by lectin-glycan interactions: a homeostatic and innate immune regulatory mechanism. Glycobiology 20:1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM, Hansen GH (2006) Lipid raft organization and function in brush borders of epithelial cells. Mol Membr Biol 23:71–79

    Article  CAS  PubMed  Google Scholar 

  • Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA (2011) When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50:7842–7857

    Article  CAS  PubMed  Google Scholar 

  • DiLella S, Marti MA, Croci DO, Guardia CMA, Dıáz Ricci JC, Rabinovich GA, Caramelo JJ, Estrin DA (2010) Linking the structure and thermal stability of β-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria. Biochemistry 49(35):7652–7658

    Article  CAS  Google Scholar 

  • Eastlake K, Heywood WE, Tracey-White D, Aquino E, Bliss E, Vasta GR, Mills K, Khaw PT, Moosajee M, Limb GA (2017) Comparison of proteomic profiles in the zebrafish retina during experimental degeneration and regeneration. Sci Rep 16(7):44601

    Article  Google Scholar 

  • Esteban A, Popp MW, Vyas VK, Strijbis K, Ploegh HL, Fink GR (2011) Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci U S A 108:14270–14275. https://doi.org/10.1073/pnas.1111415108

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng C, Ghosh A, Amin MN, Giomarelli B, Shridhar S, Banerjee A, Fernandez-Robledo JA, Bianchet MA, Wang LX, Wilson IB, Vasta GR (2013) The galectin CvGal1 from the eastern oyster (Crassostrea virginica) binds to blood group A oligosaccharides on the hemocyte surface. J Biol Chem 288:24394–24409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Nita-Lazar M, González-Montalbán N, Wang J, Mancini J, Ravindran C, Ahmed H, Vasta GR (2015a) Manipulating galectin expression in zebrafish (Danio rerio). Methods Mol Biol 1207:327–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Ghosh A, Amin MN, Bachvaroff TR, Tasumi S, Pasek M, Banerjee A, Shridhar S, Wang LX, Bianchet MA, Vasta GR (2015b) Galectin CvGal2 from the Eastern Oyster (Crassostrea virginica) displays unique specificity for ABH blood group Oligosaccharides and differentially recognizes sympatric Perkinsus species. Biochemistry 54:4711–4730

    Article  CAS  PubMed  Google Scholar 

  • Fogel S, Guittaut M, Legrand A, Monsigny M, Hebert E (1999) The tat protein of HIV-1 induces galectin-3 expression. Glycobiology 9:383–387

    Article  CAS  PubMed  Google Scholar 

  • Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavao MS (2014) Extracellular galectin-3 in tumor progression and metastasis. Front Oncol 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabius HJ (1997) Animal lectins. Eur J Biochem FEBS 243:543–576

    Article  CAS  Google Scholar 

  • García Caballero G, Kaltner H, Michalak M, Shilova N, Yegres M, André S, Ludwig AK, Manning JC, Schmidt S, Schnölzer M, Bovin NV, Reusch D, Kopitz J, Gabius HJ (2016) Chicken GRIFIN: a homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie 128–129:34–47

    Google Scholar 

  • Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 36(Pt 6):1472–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner OB, Yun T, Pernet O, Aguilar HC, Park A, Bowden TA, Freiberg AN, Lee B, Baum LG (2015) Timing of galectin-1 exposure differentially modulates Nipah virus entry and syncytium formation in endothelial cells. J Virol 89:2520–2529

    Article  CAS  PubMed  Google Scholar 

  • Gauthier S, Pelletier I, Ouellet M, Vargas A, Tremblay MJ et al (2008) Induction of galectin-1 expression by HTLV-I Tax and its impact on HTLV-I infectivity. Retrovirology 5:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiadis V, Stewart HJ, Pollard HJ, Tavsanoglu Y, Prasad R, Horwood J, Deltour L, Goldring K, Poirier F, Lawrence-Watt DJ (2007) Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration. Dev Dyn 236:1014–1024

    Google Scholar 

  • Gorski JP et al (2002) New alternatively spliced form of galectin-3, a member of the beta-galactoside-binding animal lectin family, contains a predicted transmembrane-spanning domain and a leucine zipper motif. J Biol Chem 277:18840–18848

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Banerjee A, Amzel LM, Vasta GR, Bianchet MA (2019) Structure of the zebrafish galectin-1-L2 and model of its interaction with the infectious hematopoietic necrosis virus (IHNV) envelope glycoprotein. Glycobiology 29(5):419–430

    Google Scholar 

  • Guha P, Kaptan E, Bandyopadhyaya G, Kaczanowska S, Davila E, Thompson K, Martin SS, Kalvakolanu DV, Vasta GR, Ahmed H (2013) Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis. Proc Natl Acad Sci U S A 110:5052–5057

    Google Scholar 

  • Guzman-Aranguez A, Mantelli F, Argueso P (2009) Mucin-type O-glycans in tears of normal subjects and patients with non-Sjogren’s dry eye. Invest Ophthalmol Vis Sci 50:4581–4587

    Article  PubMed  Google Scholar 

  • Harmache A, LeBerre M, Droineau S, Giovannini M, Bremont M (2006) Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus. J Virol 80:3655–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori T, Arikawa T, Fujioka Y, Maruyama J, Nakayama Y, Ohba Y, Niki T, Miyazaki T, Hirashima M, Kida H (2013) Inhibition of influenza A virus infection by Galectin-9. Jpn J Vet Res 61(1&2):5–18

    Google Scholar 

  • Hill M, Mazal D, Biron VA, Pereira L, Ubillos L, Berriel E, Ahmed H, Freire T, Rondan M, Vasta GR, Liu FT, Iglesias MM, Osinaga E (2010) A novel clinically relevant animal model for studying galectin-3 and its ligands during colon carcinogenesis. J Histochem Cytochem 58:553–565

    Article  CAS  Google Scholar 

  • Hirabayashi J, Kasai K (1993) The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    Article  CAS  PubMed  Google Scholar 

  • Hirashima M, Kashio Y, Nishi N, Yamauchi A, Imaizumi TA, Kageshita T, Saita N, Nakamura T (2002) Galectin-9 in physiological and pathological conditions. Glycoconj J 19(7–9):593–600

    Google Scholar 

  • Houzelstein D, Gonca̧lves IR, Fadden AJ, Sidhu SS, Cooper DNW, Drickamer K, Leffler H, Poirier F (2004) Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 21(7):1177–1187

    Google Scholar 

  • Hsu DK, Liu F-T (2008) Regulation of immune responses by Galectin-3. In: Vasta GR, Ahmed H (eds) Animals lectins: a functional view. CRC Press, Boca Raton, FL

    Google Scholar 

  • Hsu YA, Kuo YH, Chen CS, Chen YC, Huang CC, Chang CY, Lin CJ, Lin CW, Lin HJ, Liu FT, Wan L (2018) Galectin-12 is involved in corn silk-induced anti-adipogenesis and anti-obesity effects. Am J Chin Med 5:1–19

    Google Scholar 

  • Huang WC, Chen HL, Chen HY, Peng KP, Lee Y et al (2016) Galectin-3 and its genetic variation rs4644 modulate enterovirus 71 infection. PLoS ONE 11(12):e0168627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ideo H, Seko A, Ishizuka I, Yamashita K (2003) The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity. Glycobiology 13(10):713–723

    Article  CAS  PubMed  Google Scholar 

  • Ideo H, Seko A, Yamashita K (2005) Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells. J Biol Chem 280:4730–4737

    Article  CAS  PubMed  Google Scholar 

  • Ideo H, Fukushima K, Gengyo-Ando K, Mitani S, Dejima K, Nomura K, Yamashita K (2009) A Caenorhabditis elegans glycolipid-binding galectin functions in host defense against bacterial infection. J Biol Chem 284(39):26493–26501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ideo H, Matsuzaka T, Nonaka T, Seko A, Yamashita K (2011) Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans. J Biol Chem 286(13):11346–11355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F-T, Yang R-Y, Hsu DK (2012) Galectins in acute and chronic inflammation. Ann N Y Acad Sci 1253(1):80–91

    Google Scholar 

  • Jeon S-B, Yoon HJ, Chang CY, Koh HS, Jeon S-H et al (2010) Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway. J Immunol 185(11):7037–7046

    Article  CAS  PubMed  Google Scholar 

  • Jouault T, ElAbed-ElBehi M, Martínez-Esparza M, Breuilh L, Trinel PA, Chamaillard M et al (2006) Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177:4679–4687

    Google Scholar 

  • Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barillas-Mury C, Sacks DL, Valenzuela JG (2004) A role for insect galectins in parasite survival. Cell 119:329–341

    Article  CAS  PubMed  Google Scholar 

  • Katoh S, Ikeda M, Shimizu H, Mouri K, Obase Y, Kobashi Y, Fukushima K, Hirashima M, Oka M (2014) Increased levels of plasma galectin-9 in patients with influenza virus infection. Tohoku J Exp Med 232(4):263–267

    Article  CAS  PubMed  Google Scholar 

  • Kohatsu L, Hsu DK, Jegalian AG, Liu FT, Baum LG (2006) Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J Immunol 177(7):4718–4726

    Article  CAS  PubMed  Google Scholar 

  • Krejcirikova V, Pachl P, Fabry M, Maly P, Rezacova P, Brynda J (2011) Structure of the mouse galectin-4N-terminal carbohydrate-recognition domain reveals the mechanism of oligosaccharide recognition. Acta Crystallogr D Biol Crystallogr 67:204–211

    Article  CAS  PubMed  Google Scholar 

  • Krzeminski M, Singh T, André S, Lensch M, Wu AM, Bonvin AM, Gabius HJ (2011) Human galectin-3 (Mac-2 antigen): defining molecular switches of affinity to natural glycoproteins, structural and dynamic aspects of glycan binding by flexible ligand docking and putative regulatory sequences in the proximal promoter region. Biochim Biophys Acta 1810:150–161

    Article  CAS  PubMed  Google Scholar 

  • Kurz S, Jin C, Hykollari A, Gregorich D, Giomarelli B, Vasta GR, Wilson IB, Paschinger K (2013) Hemocytes and plasma of the eastern oyster (Crassostrea virginica) display a diverse repertoire of sulfated and blood group A-modified N-glycans. J Biol Chem 288:24410–24428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutzner TJ, Gabba A, Fitzgerald FG, Shilova NV, García Caballero G, Ludwig AK, Manning JC, Knospe C, Kaltner H, Sinowatz F, Murphy PV, Cudic M, Bovin NV, Gabius HJ (2019) How altering the modular architecture affects aspects of lectin activity: case study on human galectin-1. Glycobiology cwz034. https://doi.org/10.1093/glycob/cwz034 (Epub ahead of print)

  • Lee PH, Liu CM, Ho TS, Tsai YC, Lin CC et al (2015) Enterovirus 71 virion-associated galectin-1 facilitates viral replication and stability. PLoS ONE 10(2):e0116278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levroney EL, Aguilar HC, Fulcher JA, Kohatsu L, Pace KE, Pang M, Gurney KB, Baum LG, Lee B (2005) Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J Immunol 175:413–420

    Article  CAS  PubMed  Google Scholar 

  • Li FY, Weng IC, Lin CH, Kao MC, Wu MS, Chen HY, Liu FT (2019) Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 29(2):151–162

    Google Scholar 

  • Liao D-I, Kapadia G, Ahmed H, Vasta GR, Herzberg O (1994) Structure of S-lectin, a developmentally regulated vertebrate b-galactoside-binding protein. Proc Natl Acad Sci 91:1428–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linden JR, De Paepe ME, Laforce-Nesbitt SS, Bliss JM (2013a) Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol 51:641–651

    Article  CAS  PubMed  Google Scholar 

  • Linden JR, Kunkel D, Laforce-Nesbitt SS, Bliss JM (2013b) The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils. Cell Microbiol 15:1127–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipkowitz MS, Leal-Pinto E, Cohen BE, Abramson RG (2004) Galectin 9 is the sugar-regulated urate transporter/channel UAT. Glycoconj J 19:491–498

    Article  Google Scholar 

  • Lobsanov YD, Gitt MA, Leffler H, Barondes SH, Rini JM (1993) X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9-Å resolution. J Biol Chem 268(36):27034–27038

    Google Scholar 

  • Lopez-Lucendo MF, Solis D, Andre S, Hirabayashi J, Kasai K, Kaltner H, Gabius HJ, Romero A (2004) Growth-regulatory human galectin-1: crystallographic characterization of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J Mol Biol 343(4):957–970

    Article  CAS  PubMed  Google Scholar 

  • Lujan AL, Croci DO, Gambarte Tudela JA, Losinno AD, Cagnoni AJ, Mariño KV, Damiani MT, Rabinovich GA (2018) Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection. Proc Natl Acad Sci USA 115(26):E6000–E6009

    Google Scholar 

  • Machala EA, McSharry BP, Rouse BT, Abendroth A, Slobedman B (2019) Gal power: the diverse roles of galectins in regulating viral infections. J Gen Virol 100(3):333–349

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Huergo SP, Blidner AG, Rabinovich GA (2017) Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr Opin Immunol 45:8–15

    Article  CAS  PubMed  Google Scholar 

  • Mercier S, St-Pierre C, Pelletier I, Ouellet M, Tremblay MJ, Sato S (2008) Galectin-1 promotes HIV-1 infectivity in macrophages through stabilization of viral adsorption. Virology 371:121–129

    Article  CAS  PubMed  Google Scholar 

  • Morris S, Ahmad N, Andre S, Kaltner H, Gabius HJ, Brenowitz M, Brewer F (2004) Quaternary solution structures of galectins-1, -3, and -7. Glycobiology 14:293–300

    Article  CAS  PubMed  Google Scholar 

  • Nabi IR, Shankar J, Dennis JW (2015) The galectin lattice at a glance. J Cell Sci 128(13):2213–2219

    Google Scholar 

  • Nagae M, Nishi N, Murata T, Usui T, Nakamura T, Wakatsuki S, Kato R (2009) Structural analysis of the recognition mechanism of poly-N-acetyllactosamine by the human galectin-9 N-terminal carbohydrate recognition domain. Glycobiology 19:112–117

    Article  CAS  PubMed  Google Scholar 

  • Nakamura O, Watanabe M, Ogawa T, Muramoto K, Ogawa K, Tsutsui S, Kamiya H (2012) Galectins in the abdominal cavity of the conger eel Conger myriaster participate in the cellular encapsulation of parasitic nematodes by host cells. Fish Shellfish Immunol 33(4):780–787

    Article  CAS  PubMed  Google Scholar 

  • Nemoto-Sasaki Y, Hayama K, Ohya H, Arata Y, Kaneko MK, Saitou N, Hirabayashi J, Kasai K (2008) Caenorhabditis elegans galectins LEC-1-LEC-11: structural features and sugar-binding properties. Biochim Biophys Acta 1780(10):1131–1142

    Google Scholar 

  • Nita-Lazar M, Banerjee A, Feng C, Amin MN, Frieman MB, Chen WH, Cross AS, Wang LX, Vasta GR (2015a) Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding. Mol Immunol 65:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nita-Lazar M, Banerjee A, Feng C, Vasta GR (2015b) Galectins regulate the inflammatory response in airway epithelial cells exposed to microbial neuraminidase by modulating the expression of SOCS1 and RIG1. Mol Immunol 68:194–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nita-Lazar M, Mancini J, Feng C, Gonzalez-Montalban N, Ravindran C, Jackson S, Heras-Sanchez Ade L, Giomarelli B, Ahmed H, Haslam SM, Wu G, Dell A, Ammayappan A, Vakharia VN, Vasta GR (2016) The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells. Dev Comp Immunol 55:241–252

    Article  CAS  PubMed  Google Scholar 

  • Ogden AT, Nunes I, Ko K, Wu S, Hines CS, Wang AF et al (1998) GRIFIN, a novel lens-specific protein related to the galectin family. J Biol Chem 273:28889–28896

    Article  CAS  PubMed  Google Scholar 

  • Okumura CY, Baum LG, Johnson PJ (2008) Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell Microbiol 10:2078–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouellet M, Mercier S, Pelletier I, Bounou S, Roy J, Hirabayashi J, Sato S, Tremblay MJ (2005) Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J Immunol 174:4120–4126

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Rhodes DH, Pini M, Akasheh RT, Castellanos KJ, Cabay RJ, Cooper D, Perretti M, Fantuzzi G (2013) Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice. PloS ONE 8:e57915

    Google Scholar 

  • Pace KE, Lebestky T, Hummel T, Arnoux P, Kwan K, Baum LG (2002) Characterization of a novel Drosophila melanogaster galectin. J Biol Chem 277:13091–13098

    Article  CAS  PubMed  Google Scholar 

  • Park AM, Hagiwara S, Hsu DK, Liu FT, Yoshie O (2016) Galectin-3 plays an important role in innate immunity to gastric infection by Helicobacter pylori. Infect Immun 84(4):1184–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Djukic A, Arsenijevic NN, Lukic ML (2013) Galectin-3 is a regulator of metaflammation in adipose tissue and pancreatic islets. Adipocyte 2:266–271

    Google Scholar 

  • Preston SJ, Beddoe T, Walkden-Brown S, Meeusen E, Piedrafita D (2015) Galectin-11: a novel host mediator targeting specific stages of the gastrointestinal nematode parasite, Haemonchus contortus. Int J Parasitol 45(12):791–796

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Toscano MA (2009) Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9:338–352

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich G, Toscano MA, Jackson SS, Vasta GR (2007a) Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 17:513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich GA, Liu FT, Hirashima M, Anderson A (2007b) An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 66:143–158

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, van Kooyk Y, Cobb BA (2012) Glycobiology of immune responses. Ann N Y Acad Sci 1253:1–15

    Google Scholar 

  • Ramaswamy S, Sleiman MH, Masuyer G, Arbez-Gindre C, Micha-Screttas M, Calogeropoulou T, Steele BR, Acharya KR (2015) Structural basis of multivalent galactose-based dendrimer recognition by human galectin-7. FEBS J 282(2):372–387

    Article  CAS  PubMed  Google Scholar 

  • Rossi B, Espeli M, Schiff C, Gauthier L (2006) Clustering of pre-B cell integrins induces galectin-1-dependent pre-B cell receptor relocalization and activation. J Immunol 177:796–803

    Article  CAS  PubMed  Google Scholar 

  • Ruas LP, Bernardes ES, Fermino ML, de Oliveira LL, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC (2009) Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PLoS ONE 4:e4519

    Google Scholar 

  • Sato S, Ouellet M, St-Pierre C, Tremblay MJ (2012) Glycans, galectins, and HIV-1 infection. Ann N Y Acad Sci 1253:133–148

    Article  CAS  PubMed  Google Scholar 

  • Schwarz FP, Ahmed H, Bianchet MA et al (1998) Thermodynamics of bovine spleen galectin-1 binding to disaccharides: correlation with structure and its effect on oligomerization at the denaturation temperature. Biochemistry 37:5867–5877

    Article  CAS  PubMed  Google Scholar 

  • Seetharaman J, Kanigsberg A, Slaaby R et al (1998) X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-Å resolution. J Biol Chem 273:13047–13052

    Article  CAS  PubMed  Google Scholar 

  • Shi X-Z, Wang L, Xu S, Zhang X-W, Zhao X-F, Vasta GR, Wang J-X (2014) A galectin from the kuruma shrimp (Marsupenaeus japonicus) functions as an opsonin and promotes bacterial clearance from hemolymph. PLoS ONE 9:e91794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si Y, Feng S, Gao J, Wang Y, Zhang Z, Meng Y, Zhou Y, Tai G, Su J (2016) Human galectin-2 interacts with carbohydrates and peptides non-classically: new insight from X-ray crystallography and hemagglutination. Acta Biochim Biophys Sin (Shanghai) 48(10):939–947

    Article  CAS  Google Scholar 

  • Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180:3091–3102

    Google Scholar 

  • Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine J-P, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, Smith DF, Cummings RD (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16:295–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Gao J, Si Y, Cui L, Song C, Wang Y, Wu R, Tai G, Zhou Y (2018) Galectin-10: a new structural type of prototype galectin dimer and effects on saccharide ligand binding. Glycobiology 28(3):159–168

    Google Scholar 

  • Takeuchi T, Tamura M, Ishiwata K, Hamasaki M, Hamano S, Arata Y (2019) Hatanaka T Galectin-2 suppresses nematode development by binding to the invertebrate-specific galactoseβ1-4fucose glyco-epitope. Glycobiology 29(6):504–512

    Article  CAS  PubMed  Google Scholar 

  • Tasumi S, Vasta GR (2007) A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J Immunol 179:3086–3098

    Article  CAS  PubMed  Google Scholar 

  • Than NG, Sumegi B, Than GN, Berente Z, Bohn H (1999) Isolation and sequence analysis of a cDNA encoding human placental tissue protein 13 (PP13), a new lysophospholipase, homolog of human eosinophil Charcot-Leyden Crystal protein. Placenta 20:703–710

    Article  CAS  PubMed  Google Scholar 

  • Than NG, Pick E, Bellyei S, Szigeti A, Burger O, Berente Z et al (2004) Functional analyses of placental protein 13/galectin-13. Eur J Biochem 271:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F (2012) Galectin8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo KA, Fermino ML, Andrade Cdel C, Riul TB, Alves RT, Muller VD, Russo RR, Stowell SR, Cummings RD, Aquino VH, Dias- Baruffi M (2014) Galectin-1 exerts inhibitory effects during DENV-1 infection. PLoS ONE 9:e112474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomizawa T et al (2005) Solution structure of the C-terminal gal-bind lectin domain from human galectin-4. Structural Genomics and Proteomics Initiative (RSGI), Riken

    Google Scholar 

  • Tsay YG, Lin NY, Voss PG, Patterson RJ, Wang JL (1999) Export of galectin-3 from nuclei of digitonin-permeabilized mouse 3T3 fibroblasts. Exp Cell Res 252:250–261

    Article  CAS  PubMed  Google Scholar 

  • van den Berg TK, Honing H, Franke N, van Remoortere A, Schiphorst WE, Liu FT et al (2004) LacdiNAc glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J Immunol 173:1902–1907

    Google Scholar 

  • Vasta GR (2009) Roles of galectins in infection. Nat Rev Microbiol 7:424–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasta GR, Ahmed H (2008) Animal lectins: a functional view. CRC Press, New York

    Google Scholar 

  • Vasta GR, Ahmed H, Du S-J, Henrikson D (2004) Galectins in teleost fish: Zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity. Glycoconj J 21:503–521

    Article  CAS  PubMed  Google Scholar 

  • Vasta GR, Ahmed H, Bianchet MA, Fernández-Robledo JA, Amzel LM (2012) Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects. Ann N Y Acad Sci 1253(1):14–26

    Article  CAS  Google Scholar 

  • Vasta GR, Feng C, Bianchet MA, Bachvaroff TR, Tasumi S (2015) Structural, functional, and evolutionary aspects of galectins in aquatic mollusks: from a sweet tooth to the Trojan horse. Fish Shellfish Immunol 46(1):94–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasta GR, Amzel LM, Bianchet MA, Cammarata M, Feng C, Saito K (2017) F-type lectins: a highly diversified family of fucose-binding proteins with a unique sequence motif and structural fold, involved in self/non-self-recognition. Front Immunol 8:1648

    Google Scholar 

  • Vazquez L, Alpuche J, Maldonado G, Agundis C, Pereyra-Morales A, Zenteno E (2009) Review: immunity mechanisms in crustaceans. Innate Immun 15(3):179–188

    Google Scholar 

  • Woodward AM, Mauris J, Argueso P (2013) Binding of transmembrane mucins to galectin-3 limits herpesvirus 1 infection of human corneal keratinocytes. J Virol 87(10):5841–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu AM et al (2002) Fine specificity of domain-I of recombinant tandem-repeat-type galectin-4 from rat gastrointestinal tract (G4-N). Biochem J 367:653–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SY, Yu JS, Liu FT, Miaw SC, Wu-Hsieh BA (2013) Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J Immunol 190:3427–3437

    Article  CAS  PubMed  Google Scholar 

  • Xia X, You M, Rao XJ, Yu XQ (2018) Insect C-type lectins in innate immunity. Dev Comp Immunol 83:70–79

    Google Scholar 

  • Xue J, Fu C, Cong Z, Peng L, Peng Z et al (2017) Galectin-3 promotes caspase-independent cell death of HIV-1-infected macrophages. FEBS J 284(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Yang RY, Yu L, Graham JL, Hsu DK, Lloyd KC, Havel PJ, Liu FT (2011a) Ablation of a galectin preferentially expressed in adipocytes increases lipolysis, reduces adiposity, and improves insulin sensitivity in mice. Proc Natl Acad Sci U S A 108:18696–18701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M-L, Chen Y-H, Wang S-W, Huang Y-J, Leu C-H et al (2011b) Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J Virol 85(19):10010–10020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ML, Chen YH, Wang SW, Huang YJ, Leu CH, Yeh NC, Chu CY, Lin CC, Shieh GS, Chen YL, Wang JR, Wang CH, Wu CL, Shiau AL (2011c) Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J Virol 85:10010–10020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Ge H, Sun J, Gao Y, Teng M, Niu L (2008) Crystal structure of the C-terminal conserved domain of human GRP, a galectin-related protein, reveals a function mode different from those of galectins. Proteins 15;71(3):1582–1588

    Google Scholar 

  • Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In the text, information is reviewed from studies in the author’s laboratory that were supported by the National Institutes of Health, National Science Foundation, Maryland Sea Grant Program, National Oceanic and Atmospheric Administration, and the Mizutani Foundation for Glycoscience (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo R. Vasta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasta, G.R. (2020). Galectins in Host–Pathogen Interactions: Structural, Functional and Evolutionary Aspects. In: Hsieh, SL. (eds) Lectin in Host Defense Against Microbial Infections. Advances in Experimental Medicine and Biology, vol 1204. Springer, Singapore. https://doi.org/10.1007/978-981-15-1580-4_7

Download citation

Publish with us

Policies and ethics