Skip to main content

Assembly and Regulation of CRL Ubiquitin Ligases

  • Chapter
  • First Online:
Cullin-RING Ligases and Protein Neddylation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1217))

Abstract

Cullin-RING ubiquitin ligases (CRLs) determine the substrate specificity of ubiquitination reactions, and substrates are recruited to the cullin core through binding to their cognate substrate receptor modules. Because a family of substrate receptors compete for the same cullin core, the assembly and activity of CRLs are dynamically regulated to fulfill the needs of the cell to adapt to the changing pool of proteins demanding ubiquitination. Cullins are modified by NEDD8, a ubiquitin-like protein. This process, referred to as neddylation, promotes the E3 activity of CRLs by inducing conformational rearrangement in the Cullin-RING catalytic core. Cand1 is a cullin-associated protein whose binding is excluded by cullin neddylation. Although early biochemical studies suggested that Cand1 inhibits CRL activity, genetic studies revealed its positive role in ubiquitination. Emerging evidence from kinetic and quantitative proteomic studies demonstrated that Cand1 stimulates assembly of new Skp1-Cul1-F-box protein (SCF) complexes by exchanging the Skp1-F-box protein substrate receptor modules. Furthermore, aided by refined experimental design as well as computational simulation, an attractive model has been developed in which substrate, neddylation cycle and Cand1-mediated “adaptive exchange” collaborate to maintain the dynamics of the cellular SCF repertoire. Here, we review and discuss recent advances that have deepened our understanding of CRL regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4HB:

Four-helix bundle

APP-BP1:

Amyloid-β precursor protein binding protein 1

CAND1:

Cullin-associated NEDD8-dissociated protein 1

CAND2:

Cullin-associated NEDD8-dissociated protein 2

CRLs:

Cullin-RING ubiquitin ligases

CSN:

COP9 signalosome

CTD:

C-terminal domain

DCN1:

Defective in cullin neddylation 1

DEN1:

Deneddylase 1

DKO:

Double knockout

FBPs:

F-box proteins

FRET:

Fluorescence resonance energy transfer

GEFs:

Guanine nucleotide exchange factors

HEAT:

Huntingtin-elongation-A subunit-TOR

NAE:

NEDD8-activating enzyme

NEDD8:

Neural precursor cell expressed, developmentally downregulated 8

NMR:

Nuclear magnetic resonance

NTD:

N-terminal domain

PONY:

Potentiating neddylation

Rbx1:

RING-box protein 1

Rbx2:

RING-box protein 2

SCF:

Skp1-Cul1-F-box

TBP:

TATA-binding protein

TNFα:

Tumor necrosis factor alpha

UBA3:

Ubiquitin-activating enzyme 3

UCHL3:

Ubiquitin C-terminal hydrolase L3

UFD:

Ubiquitin-fold domain

References

  • Angers S, Li T, Yi X et al (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443(7111):590–593

    Article  CAS  PubMed  Google Scholar 

  • Bennett EJ, Rush J, Gygi SP et al (2010) Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143(6):951–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boh BK, Smith PG, Hagen T (2011) Neddylation-induced conformational control regulates cullin RING ligase activity in vivo. J Mol Biol 409(2):136–145

    Article  CAS  PubMed  Google Scholar 

  • Bosu DR, Feng H, Min K et al (2010) C. elegans CAND-1 regulates cullin neddylation, cell proliferation and morphogenesis in specific tissues. Dev Biol 346(1):113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavadini S, Fischer ES, Bunker RD et al (2016) Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531(7596):598–603

    Article  CAS  PubMed  Google Scholar 

  • Chan Y, Yoon J, Wu JT et al (2008) DEN1 deneddylates non-cullin proteins in vivo. J Cell Sci 121(Pt 19):3218–3223

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2004) AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis. Plant Physiol 135(2):1020–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew EH, Hagen T (2007) Substrate-mediated regulation of cullin neddylation. J Biol Chem 282(23):17032–17040

    Article  CAS  PubMed  Google Scholar 

  • Chua YS, Boh BK, Ponyeam W et al (2011) Regulation of cullin RING E3 ubiquitin ligases by CAND1 in vivo. PLoS One 6(1):e16071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang HW, Zhang W, Gray WM (2004) Arabidopsis ETA2, an apparent ortholog of the human cullin-interacting protein CAND1, is required for auxin responses mediated by the SCF(TIR1) ubiquitin ligase. Plant Cell 16(7):1883–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cope GA, Deshaies RJ (2003) COP9 signalosome. Cell 114(6):663–671

    Article  CAS  PubMed  Google Scholar 

  • Cope GA, Suh GS, Aravind L et al (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298(5593):608–611

    Article  CAS  PubMed  Google Scholar 

  • Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri S, Dharmasiri N, Hellmann H et al (2003) The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. EMBO J 22(8):1762–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda DM, Borg LA, Scott DC et al (2008) Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134(6):995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emberley ED, Mosadeghi R, Deshaies RJ (2012) Deconjugation of Nedd8 from Cul1 is directly regulated by Skp1-F-box and substrate, and the COP9 signalosome inhibits deneddylated SCF by a noncatalytic mechanism. J Biol Chem 287(35):29679–29689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enchev RI, Scott DC, Da Fonseca PC et al (2012) Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep 2(3):616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enchev RI, Schulman BA, Peter M (2015) Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol 16(1):30–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Shen Y, Sullivan JA et al (2004) Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein degradation. Plant Cell 16(7):1870–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer ES, Scrima A, Bohm K et al (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147(5):1024–1039

    Article  CAS  PubMed  Google Scholar 

  • Gan-Erdene T, Nagamalleswari K, Yin L et al (2003) Identification and characterization of DEN1, a deneddylase of the ULP family. J Biol Chem 278(31):28892–28900

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg SJ, Cascio TC, Shumway SD et al (2004) Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119(4):517–528

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Yeh ETH (1999) Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J Biol Chem 274(17):12036–12042

    Article  CAS  PubMed  Google Scholar 

  • Goody RS, Hofmann-Goody W (2002) Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. Eur Biophys J: EBJ 31(4):268–274

    Article  CAS  PubMed  Google Scholar 

  • Gray WM (2002) Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell Online 14(9):2137–2144

    Article  CAS  Google Scholar 

  • Guo Z, Ahmadian MR, Goody RS (2005) Guanine nucleotide exchange factors operate by a simple allosteric competitive mechanism. Biochemistry 44(47):15423–15429

    Article  CAS  PubMed  Google Scholar 

  • He Q, Cheng P, He Q et al (2005) The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev 19(13):1518–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu M, Li P, Li M et al (2002) Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111(7):1041–1054

    Article  CAS  PubMed  Google Scholar 

  • Huang DT, Miller DW, Mathew R et al (2004) A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat Struct Mol Biol 11(10):927–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DT, Paydar A, Zhuang M et al (2005) Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8’s E1. Mol Cell 17(3):341–350

    Article  CAS  PubMed  Google Scholar 

  • Huang DT, Hunt HW, Zhuang M et al (2007) Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Nature 445(7126):394–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DT, Ayrault O, Hunt HW et al (2009) E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell 33(4):483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J-W, Min K-W, Tamura T-A et al (2003) TIP120A associates with unneddylated cullin 1 and regulates its neddylation. FEBS Lett 541(1–3):102–108

    Article  CAS  PubMed  Google Scholar 

  • Johnston SC, Riddle SM, Cohen RE et al (1999) Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J 18(14):3877–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamitani T, Kito K, Nguyen HP et al (1997) Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 272(45):28557–28562

    Article  CAS  PubMed  Google Scholar 

  • Kamura T, Conrad MN, Yan Q et al (1999) The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev 13(22):2928–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami T, Chiba T, Suzuki T et al (2001) NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J 20(15):4003–4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keuss MJ, Thomas Y, McArthur R et al (2016) Characterization of the mammalian family of DCN-type NEDD8 E3 ligases. J Cell Sci 129(7):1441–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim AY, Bommelje CC, Lee BE et al (2008) SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation. J Biol Chem 283(48):33211–33220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebe C, Prinz H, Wittinghofer A et al (1995) The kinetic mechanism of ran-nucleotide exchange catalyzed by RCC1. Biochemistry 34(39):12543–12552

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tomooka Y, Noda M (1992) Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 185(3):1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Kurihara LJ, Semenova E, Levorse JM et al (2000) Expression and functional analysis of Uch-L3 during mouse development. Mol Cell Biol 20(7):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz T, Ozlu N, Rudolf F et al (2005) The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature 435(7046):1257–1261

    Article  CAS  PubMed  Google Scholar 

  • Kurz T, Chou YC, Willems AR et al (2008) Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. Mol Cell 29(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Lammer D, Mathias N, Laplaza JM et al (1998) Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. Genes Dev 12(7):914–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JE, Sweredoski MJ, Graham RL et al (2011) The steady-state repertoire of human SCF ubiquitin ligase complexes does not require ongoing Nedd8 conjugation. Mol Cell Proteomics: MCP 10(5):M110.006460

    Article  PubMed  CAS  Google Scholar 

  • Leyser HM, Lincoln CA, Timpte C et al (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364(6433):161–164

    Article  CAS  PubMed  Google Scholar 

  • Liakopoulos D, Doenges G, Matuschewski K et al (1998) A novel protein modification pathway related to the ubiquitin system. EMBO J 17(8):2208–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2(11):1071–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linghu B, Callis J, Goebl MG (2002) Rub1p processing by Yuh1p is required for wild-type levels of Rub1p conjugation to Cdc53p. Eukaryot Cell 1(3):491–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Furukawa M, Matsumoto T et al (2002) NEDD8 modification of CUL1 dissociates p120CAND1, an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell 10(6):1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Reitsma JM, Mamrosh JL et al (2018) Cand1-mediated adaptive exchange mechanism enables variation in F-box protein expression. Mol Cell 69(5):773–86 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo SC, Hannink M (2006) CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1. Mol Cell Biol 26(4):1235–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyapina S, Cope G, Shevchenko A et al (2001) Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292(5520):1382–1385

    Article  CAS  PubMed  Google Scholar 

  • Makino Y, Yogosawa S, Kayukawa K et al (1999) TATA-binding protein-interacting protein 120, TIP120, stimulates three classes of eukaryotic transcription via a unique mechanism. Mol Cell Biol 19(12):7951–7960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza HM, Shen L-N, Botting C et al (2003) NEDP1, a highly conserved cysteine protease that deNEDDylates cullins. J Biol Chem 278(28):25637–25643

    Article  CAS  PubMed  Google Scholar 

  • Mergner J, Schwechheimer C (2014) The NEDD8 modification pathway in plants. Front Plant Sci 5:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Min KW, Hwang JW, Lee JS et al (2003) TIP120A associates with cullins and modulates ubiquitin ligase activity. J Biol Chem 278(18):15905–15910

    Article  CAS  PubMed  Google Scholar 

  • Min KW, Kwon MJ, Park HS et al (2005) CAND1 enhances deneddylation of CUL1 by COP9 signalosome. Biochem Biophys Res Commun 334(3):867–874

    Article  CAS  PubMed  Google Scholar 

  • Monda JK, Scott DC, Miller DJ et al (2013) Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Morimoto M, Nishida T, Honda R et al (2000) Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1). Biochem Biophys Res Commun 270(3):1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Mosadeghi R, Reichermeier KM, Winkler M et al (2016) Structural and kinetic analysis of the COP9-signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. Elife 5:e12102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osaka F, Kawasaki H, Aida N et al (1998) A new NEDD8-ligating system for cullin-4A. Genes Dev 12(15):2263–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osaka F, Saeki M, Katayama S et al (2000) Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J 19(13):3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshikawa K, Matsumoto M, Yada M et al (2003) Preferential interaction of TIP120A with Cul1 that is not modified by NEDD8 and not associated with Skp1. Biochem Biophys Res Commun 303(4):1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Ou CY, Lin YF, Chen YJ et al (2002) Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev 16(18):2403–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce NW, Lee JE, Liu X et al (2013) Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 153(1):206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pintard L, Kurz T, Glaser S et al (2003) Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol 13(11):911–921

    Article  CAS  PubMed  Google Scholar 

  • Podust VN, Brownell JE, Gladysheva TB et al (2000) A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc Natl Acad Sci U S A 97(9):4579–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozo JC (1998) The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280(5370):1760–1763

    Article  CAS  PubMed  Google Scholar 

  • Rao-Naik C, Delacruz W, Laplaza JM et al (1998) The rub family of ubiquitin-like proteins. J Biol Chem 273(52):34976–34982

    Article  CAS  PubMed  Google Scholar 

  • Read MA, Brownell JE, Gladysheva TB et al (2000) Nedd8 modification of Cul-1 activates SCFbeta TrCP-dependent ubiquitination of Ikappa Balpha. Mol Cell Biol 20(7):2326–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reitsma JM, Liu X, Reichermeier KM et al (2017) Composition and regulation of the cellular repertoire of SCF ubiquitin ligases. Cell 171(6):1326–39 e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha A, Deshaies RJ (2008) Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell 32(1):21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakata E, Yamaguchi Y, Miyauchi Y et al (2007) Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nat Struct Mol Biol 14(2):167–168

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MW, Mcquary PR, Wee S et al (2009) F-box-directed CRL complex assembly and regulation by the CSN and CAND1. Mol Cell 35(5):586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C, Serino G, Callis J et al (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292(5520):1379–1382

    Article  CAS  PubMed  Google Scholar 

  • Scott DC, Monda JK, Grace CR et al (2010) A dual E3 mechanism for Rub1 ligation to Cdc53. Mol Cell 39(5):784–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DC, Monda JK, Bennett EJ et al (2011) N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334(6056):674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DC, Sviderskiy VO, Monda JK et al (2014) Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157(7):1671–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih SC, Sloper-Mould KE, Hicke L (2000) Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J 19(2):187–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloper-Mould KE, Jemc JC, Pickart CM et al (2001) Distinct functional surface regions on ubiquitin. J Biol Chem 276(32):30483–30489

    Article  CAS  PubMed  Google Scholar 

  • Soucy TA, Smith PG, Milhollen MA et al (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458(7239):732–736

    Article  CAS  PubMed  Google Scholar 

  • Tateishi K, Omata M, Tanaka K et al (2001) The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. J Cell Biol 155(4):571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada H, Kito K, Caskey LS et al (1998) Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem Biophys Res Commun 251(3):688–692

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Yeh ET, Kamitani T (1999) Identification of NEDD8-conjugation site in human cullin-2. Biochem Biophys Res Commun 257(1):100–105

    Article  CAS  PubMed  Google Scholar 

  • Walden H, Podgorski MS, Huang DT et al (2003a) The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol Cell 12(6):1427–1437

    Article  CAS  PubMed  Google Scholar 

  • Walden H, Podgorski MS, Schulman BA (2003b) Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 422(6929):330–334

    Article  CAS  PubMed  Google Scholar 

  • Wee S, Geyer RK, Toda T et al (2005) CSN facilitates cullin-RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nat Cell Biol 7(4):387–391

    Article  CAS  PubMed  Google Scholar 

  • Whitby FG, Xia G, Pickart CM et al (1998) Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J Biol Chem 273(52):34983–34991

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson KD (1988) Purification and structural properties of ubiquitin. Ubiquitin. Springer, pp 5–38

    Google Scholar 

  • Wu K, Chen A, Pan ZQ (2000) Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J Biol Chem 275(41):32317–32324

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Chen A, Tan P et al (2002) The Nedd8-conjugated ROC1-CUL1 core ubiquitin ligase utilizes Nedd8 charged surface residues for efficient polyubiquitin chain assembly catalyzed by Cdc34. J Biol Chem 277(1):516–527

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Yamoah K, Dolios G et al (2003) DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1. J Biol Chem 278(31):28882–28891

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zhu W, Nhan T et al (2013) CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat Commun 4:1642

    Article  PubMed  CAS  Google Scholar 

  • Yamoah K, Oashi T, Sarikas A et al (2008) Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1’s C-terminal tail. Proc Natl Acad Sci U S A 105(34):12230–12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yogosawa S, Makino Y, Yoshida T et al (1996) Molecular cloning of a novel 120-kDa TBP-interacting protein. Biochem Biophys Res Commun 229(2):612–617

    Article  CAS  PubMed  Google Scholar 

  • Zemla A, Thomas Y, Kedziora S et al (2013) CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun 4:1641

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Ito H, Quint M et al (2008) Genetic analysis of CAND1-CUL1 interactions in Arabidopsis supports a role for CAND1-mediated cycling of the SCFTIR1 complex. Proc Natl Acad Sci U S A 105(24):8470–8475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng N, Schulman BA, Song L et al (2002a) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416(6882):703–709

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Yang X, Harrell JM et al (2002b) CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 10(6):1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Wee S, Rhee E et al (2003) Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p. Mol Cell 11(4):927–938

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Xu J, Tan M et al (2018) UBE2M is a stress-inducible dual E2 for neddylation and ubiquitylation that promotes targeted degradation of UBE2F. Mol Cell 70(6):1008–24 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, K., Deshaies, R.J., Liu, X. (2020). Assembly and Regulation of CRL Ubiquitin Ligases. In: Sun, Y., Wei, W., Jin, J. (eds) Cullin-RING Ligases and Protein Neddylation. Advances in Experimental Medicine and Biology, vol 1217. Springer, Singapore. https://doi.org/10.1007/978-981-15-1025-0_3

Download citation

Publish with us

Policies and ethics