Skip to main content

Structural Biology of CRL Ubiquitin Ligases

  • Chapter
  • First Online:
Cullin-RING Ligases and Protein Neddylation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1217))

Abstract

Cullin-RING ubiquitin ligases (CRLs) represent the largest superfamily of multi-subunit E3s conserved in all eukaryotes. Soon after the discovery of these important ubiquitin ligase machineries, structural studies have made tremendous contributions to our understanding of their functions. Identification of the key components of CRLs by early studies raised immediate questions as to how these multi-subunit complexes assemble to promote the polyubiquitination of substrates. Specifically, how do the CRL subunits interact with each other to form a versatile E3 platform? How do they recognize specific substrates? How are the CRL-substrate interactions regulated in response to upstream signals? How are the CRL E3s themselves activated and deactivated, and how are substrate receptor subunits of CRLs exchanged in the cell? Even though we might not yet have complete answers to these questions, extensive structural analyses of CRL complexes in the past two decades have begun to unveil the themes and variations of CRL biology. In this chapter we will discuss both classic and emerging structures that help elucidate the overall architecture of CRLs, their substrate recognition modes, and regulatory mechanism of CRLs by NEDD8 modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APOBEC3:

Apolipoprotein B mRNA editing enzyme

catalytic polypeptide-like 3

ARIH1:

Ariadne-1 homolog

ASK1:

Apoptosis signal-regulating kinase 1

AUX/IAA:

Auxin/indole-3-acetic acid

BPA:

Beta-propeller A

BPB:

Beta-propeller B

BPC:

Beta-propeller C

BTB:

Broad-complex, tramtrack, and bric-a-brac

CAND1:

Cullin-associated NEDD8-dissociated protein 1

CBF-β:

Core-binding factor beta

CDC34:

Cell division cycle 34/ubiquitin-conjugating enzyme E3 R1

CDK2:

Cyclin-dependent kinase 2

CK1α:

Casein kinase 1

CKS1:

Cyclin-dependent kinases regulatory subunit 1

COI1:

Coronatine-insensitive protein 1

COP9:

Constitutive photomorphogenesis 9

CRBN:

Cereblon

CRL:

Cullin-RING ubiquitin ligases

CRY1/2:

Cryptochrome circadian regulator 1/2

CSN:

COP9 signalosome

CTD:

C-terminal domain

CUL:

Cullin

DCAFs:

DDB1-CUL4A-associated factors

DCN1:

Defective in cullin neddylation protein 1-like protein 1

DDB1/2:

DNA damage-binding protein 1/2

EB:

Elongin B

EC:

Elongin C

FBXL:

F-box and leucine-rich repeat proteins

FBXO:

F-box and other repeat-containing proteins

FBXW:

F-box and WD repeat-containing proteins

GLMN:

Glomulin

GSPT1:

G1 to S phase transition 1

HHARI/ARIH1:

Ariadne-1 homolog

HIF1α:

Hypoxia-inducible factor 1 subunit alpha

IKZF1/3:

IKAROS family zinc finger 1/3

IP6:

Inositol hexakisphosphate

JA:

Jasmonic acid

JAZ:

Jasmonate ZIM domain

KEAP1:

Kelch-like ECH-associated protein 1

KLHDC2:

Kelch domain-containing protein 2

LRR:

Leucine-rich repeat

MATH:

Meprin and TRAF-C homology

MEIS2:

Myeloid ecotropic viral integration site 1 homolog 2

NEDD8:

Neural precursor cell-expressed developmentally downregulated protein 8

NRF2:

Nuclear factor erythroid 2-related factor 2

NTD:

N-terminal domain

ODD:

Oxygen-dependent degradation

PTM:

Post-translational modification

RBX1/2:

RING box protein 1/2

RING:

Really interesting new genes

RING-IBR-RING RBR:

RING – in between ring – RING

SALL4:

Sal-like protein 4

SCF:

SKP1, CUL1, and F-box proteins

SELK:

Selenoprotein K

SELS:

Selenoprotein S

SKP1/2:

S-phase kinase-associated protein 1/2

SPOP:

Speckle-type POZ protein

STAT:

Signal transducer and activator of transcription

SV5-V:

Simian virus 5 V protein

TIR1:

Transport inhibitor response 1

UBC12/UBE2M:

Ubiquitin-conjugating enzyme E2 M

USP1:

Ubiquitin specific peptidase 1

VHL:

von Hippel-Lindau tumor suppressor

Vif:

Viral infectivity factor

WHB:

Winged-helix B

Wnt:

Wingless

β-TrCP:

Beta-transducin repeat-containing Protein

References

  • Angers S, Li T, Yi X, Maccoss MJ, Moon RT, Zheng N (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443:590–593

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Kasper JS, Skaar JR, Ali SH, Takahashi C, Decaprio JA (2003) Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis. Proc Natl Acad Sci U S A 100:9855–9860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, Godinho SI, Draetta GF, Pagano M (2007) SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316:900–904

    Article  CAS  PubMed  Google Scholar 

  • Calabrese MF, Scott DC, Duda DM, Grace CR, Kurinov I, Kriwacki RW, Schulman BA (2011) A RING E3-substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases. Nat Struct Mol Biol 18:947–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardote TAF, Gadd MS, Ciulli A (2017) Crystal structure of the Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex. Structure 25:901–911.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, Goldie KN, Mohamed WI, Faty M, Petzold G, Beckwith RE, Tichkule RB, Hassiepen U, Abdulrahman W, Pantelic RS, Matsumoto S, Sugasawa K, Stahlberg H, Thomä NH (2016) Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531:598–603

    Article  CAS  PubMed  Google Scholar 

  • Chamovitz DA, Wei N, Osterlund MT, Von Arnim AG, Staub JM, Matsui M, Deng XW (1996) The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 86:115–121

    Article  CAS  PubMed  Google Scholar 

  • Chen SJ, Wu X, Wadas B, Oh JH, Varshavsky A (2017) An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, Eck MJ, Song HK (2010) Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat Struct Mol Biol 17:1175–1181

    Article  CAS  PubMed  Google Scholar 

  • Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298:608–611

    Article  CAS  PubMed  Google Scholar 

  • Decorsière A, Mueller H, Van Breugel PC, Abdul F, Gerossier L, Beran RK, Livingston CM, Niu C, Fletcher SP, Hantz O, Strubin M (2016) Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531:386–389

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Zhang H, Li L, Tempel W, Loppnau P, Min J (2018) Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway. Nat Chem Biol 14:466–473

    Article  CAS  PubMed  Google Scholar 

  • Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Ebert BL, Fischer ES (2018) Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife 7

    Google Scholar 

  • Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA (2008) Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134:995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda DM, Olszewski JL, Tron AE, Hammel M, Lambert LJ, Waddell MB, Mittag T, Decaprio JA, Schulman BA (2012) Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Mol Cell 47:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enchev RI, Scott DC, da Fonseca PC, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP (2012) Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep 2:616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM, Faty M, Yasuda T, Cavadini S, Wakasugi M, Hanaoka F, Iwai S, Gut H, Sugasawa K, Thomä NH (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147:1024–1039

    Article  CAS  PubMed  Google Scholar 

  • Fukutomi T, Takagi K, Mizushima T, Ohuchi N, Yamamoto M (2014) Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Mol Cell Biol 34:832–846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geyer R, Wee S, Anderson S, Yates J, Wolf DA (2003) BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 12:783–790

    Article  CAS  PubMed  Google Scholar 

  • Godinho SI, Maywood ES, Shaw L, Tucci V, Barnard AR, Busino L, Pagano M, Kendall R, Quwailid MM, Romero MR, O’Neill J, Chesham JE, Brooker D, Lalanne Z, Hastings MH, Nolan PM (2007) The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316:897–900

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N (2004) Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119:517–528

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Dong L, Qiu X, Wang Y, Zhang B, Liu H, Yu Y, Zang Y, Yang M, Huang Z (2014) Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505:229–233

    Article  CAS  PubMed  Google Scholar 

  • Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, Pagano M, Pavletich NP (2005) Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol Cell 20:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP (2007) Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 26:131–143

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, Shimbara N, Kato S, Tanaka K (1999) Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18:6829–6834

    Article  CAS  PubMed  Google Scholar 

  • Horvath CM (2004) Weapons of STAT destruction. Interferon evasion by paramyxovirus V protein. Eur J Biochem 271:4621–4628

    Article  CAS  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18:2573–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Arias EE, Chen J, Harper JW, Walter JC (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23:709–721

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Kwon E, Hartley PD, Crosby DC, Mann S, Krogan NJ, Gross JD (2013) CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Mol Cell 49:632–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren I, Timms RT, Kula T, Xu Q, Li MZ, Elledge SJ (2018) The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell

    Google Scholar 

  • Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, Ciarlo C, Hartman E, Munshi N, Schenone M, Schreiber SL, Carr SA, Ebert BL (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343:301–305

    Article  PubMed  CAS  Google Scholar 

  • Krönke J, Fink EC, Hollenbach PW, Macbeth KJ, Hurst SN, Udeshi ND, Chamberlain PP, Mani DR, Man HW, Gandhi AK, Svinkina T, Schneider RK, Mcconkey M, JärĂĄs M, Griffiths E, Wetzler M, Bullinger L, Cathers BE, Carr SA, Chopra R, Ebert BL (2015) Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523:183–188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurz T, OzlĂĽ N, Rudolf F, O’Rourke SM, Luke B, Hofmann K, Hyman AA, Bowerman B, Peter M (2005) The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature 435:1257–1261

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chen X, Garbutt KC, Zhou P, Zheng N (2006) Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124:105–117

    Article  CAS  PubMed  Google Scholar 

  • Li T, Robert EI, Van Breugel PC, Strubin M, Zheng N (2010) A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol 17:105–111

    Article  PubMed  CAS  Google Scholar 

  • Liakopoulos D, Doenges G, Matuschewski K, Jentsch S (1998) A novel protein modification pathway related to the ubiquitin system. EMBO J 17:2208–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HC, Ho SC, Chen YY, Khoo KH, Hsu PH, Yen HC (2015) SELENOPROTEINS. CRL2 aids elimination of truncated selenoproteins produced by failed UGA/Sec decoding. Science 349:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HC, Yeh CW, Chen YF, Lee TT, Hsieh PY, Rusnac DV, Lin SY, Elledge SJ, Zheng N, Yen HS (2018) C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol Cell 70:602–613.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingaraju GM, Bunker RD, Cavadini S, Hess D, Hassiepen U, Renatus M, Fischer ES, Thomä NH (2014) Crystal structure of the human COP9 signalosome. Nature 512:161–165

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Furukawa M, Matsumoto T, Xiong Y (2002) NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell 10:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Reitsma JM, Mamrosh JL, Zhang Y, Straube R, Deshaies RJ (2018) Cand1-mediated adaptive exchange mechanism enables variation in F-box protein expression. Mol Cell 69:773–786.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong KK, Bradner JE, Kaelin WG (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305–309

    Article  CAS  PubMed  Google Scholar 

  • Mahrour N, Redwine WB, Florens L, Swanson SK, Martin-Brown S, Bradford WD, Staehling-Hampton K, Washburn MP, Conaway RC, Conaway JW (2008) Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases. J Biol Chem 283:8005–8013

    Article  CAS  PubMed  Google Scholar 

  • Matta-Camacho E, Kozlov G, Li FF, Gehring K (2010) Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat Struct Mol Biol 17:1182–1187

    Article  CAS  PubMed  Google Scholar 

  • Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu CC, Miller K, Fang W, Wang NY, Nguyen D, Houston J, Carmel G, Tran T, Riley M, Nosaka L, Lander GC, Gaidarova S, Xu S, Ruchelman AL, Handa H, Carmichael J, Daniel TO, Cathers BE, Lopez-Girona A, Chamberlain PP (2016) A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535:252–257

    Article  CAS  PubMed  Google Scholar 

  • Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A, Lee CW, Clayton T, Fang W, Lu CC, Riley M, Abdubek P, Blease K, Hartke J, Kumar G, Vessey R, Rolfe M, Hamann LG, Chamberlain PP (2018) SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol 14:981–987

    Article  CAS  PubMed  Google Scholar 

  • Min JH, Yang H, Ivan M, Gertler F, Kaelin WG, Pavletich NP (2002) Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science 296:1886–1889

    Article  CAS  PubMed  Google Scholar 

  • Mosadeghi R, Reichermeier KM, Winkler M, Schreiber A, Reitsma JM, Zhang Y, Stengel F, Cao J, Kim M, Sweredoski MJ, Hess S, Leitner A, Aebersold R, Peter M, Deshaies RJ, Enchev RI (2016) Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. Elife 5

    Google Scholar 

  • Nangle S, Xing W, Zheng N (2013) Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res 23:1417–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HC, Yang H, Fribourgh JL, Wolfe LS, Xiong Y (2015) Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Structure 23:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osaka F, Kawasaki H, Aida N, Saeki M, Chiba T, Kawashima S, Tanaka K, Kato S (1998) A new NEDD8-ligating system for cullin-4A. Genes Dev 12:2263–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang MI, Kobayashi A, Yokoyama S, Yamamoto M (2006) Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21:689–700

    Article  CAS  PubMed  Google Scholar 

  • Petzold G, Fischer ES, Thomä NH (2016) Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532:127–130

    Article  CAS  PubMed  Google Scholar 

  • Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RL, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ (2013) Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 153:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pintard L, Willis JH, Willems A, Johnson JL, Srayko M, Kurz T, Glaser S, Mains PE, Tyers M, Bowerman B, Peter M (2003) The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425:311–316

    Article  CAS  PubMed  Google Scholar 

  • Reitsma JM, Liu X, Reichermeier KM, Moradian A, Sweredoski MJ, Hess S, Deshaies RJ (2017) Composition and regulation of the cellular repertoire of SCF ubiquitin ligases. Cell 171:1326–1339.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusnac DV, Lin HC, Canzani D, Tien KX, Hinds TR, Tsue AF, Bush MF, Yen HS, Zheng N (2018) Recognition of the diglycine C-end degron by CRL2. Mol Cell 72:813–822.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha A, Deshaies RJ (2008) Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell 32:21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, Prabu JR, Benda C, Kramer A, Wolf E (2014) Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157:1203–1215

    Article  CAS  PubMed  Google Scholar 

  • Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, Pavletich NP (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408:381–386

    Article  CAS  PubMed  Google Scholar 

  • Scott DC, Monda JK, Bennett EJ, Harper JW, Schulman BA (2011) N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334:674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DC, Sviderskiy VO, Monda JK, Lydeard JR, Cho SE, Harper JW, Schulman BA (2014) Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157:1671–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DC, Rhee DY, Duda DM, Kelsall IR, Olszewski JL, Paulo JA, de Jong A, Ovaa H, Alpi AF, Harper JW, Schulman BA (2016) Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166:1198–1214.e24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabek N, Zheng N (2014) Plant ubiquitin ligases as signaling hubs. Nat Struct Mol Biol 21:293–296

    Article  CAS  PubMed  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirogane T, Jin J, Ang XL, Harper JW (2005) SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem 280:26863–26872

    Article  CAS  PubMed  Google Scholar 

  • Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS (2007) Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219

    Article  CAS  PubMed  Google Scholar 

  • Stebbins CE, Kaelin WG, Pavletich NP (1999) Structure of the VHL-Elongin C-Elongin B complex: implications for VHL tumor suppressor function. Science 284:455–461

    Article  CAS  PubMed  Google Scholar 

  • Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  CAS  PubMed  Google Scholar 

  • Tron AE, Arai T, Duda DM, Kuwabara H, Olszewski JL, Fujiwara Y, Bahamon BN, Signoretti S, Schulman BA, Decaprio JA (2012) The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7. Mol Cell 46:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei N, Chamovitz DA, Deng XW (1994) Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78:117–124

    Article  CAS  PubMed  Google Scholar 

  • Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8:83–93

    Article  CAS  PubMed  Google Scholar 

  • Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352:986–990

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP (2003) Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 11:1445–1456

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zhu W, Nhan T, Toth JI, Petroski MD, Wolf DA (2013) CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat Commun 4:1642

    Article  PubMed  CAS  Google Scholar 

  • Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, Bush MF, Pagano M, Zheng N (2013) SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496:64–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wei Y, Reboul J, Vaglio P, Shin TH, Vidal M, Elledge SJ, Harper JW (2003) BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425:316–321

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Kensler TW, Motohashi H (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98:1169–1203

    Article  CAS  PubMed  Google Scholar 

  • Yamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R, Pan ZQ (2008) Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1’s C-terminal tail. Proc Natl Acad Sci U S A 105:12230–12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302:1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T (2013) CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun 4:1641

    Article  PubMed  CAS  Google Scholar 

  • Zheng N, Shabek N (2017) Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86:129–157

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H (2002a) CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 10:1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP (2002b) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709

    Article  CAS  PubMed  Google Scholar 

  • Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, Miller DJ, Walden H, Duda DM, Seyedin SN, Hoggard T, Harper JW, White KP, Schulman BA (2009) Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell 36:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all members of the Zheng laboratory for their support and help. We apologize to all colleagues whose work could not be cited due to space constraints and the timing of manuscript preparation. Both D-V.R. and N.Z. are supported by Howard Hughes Medical Institute. N.Z. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rusnac, DV., Zheng, N. (2020). Structural Biology of CRL Ubiquitin Ligases. In: Sun, Y., Wei, W., Jin, J. (eds) Cullin-RING Ligases and Protein Neddylation. Advances in Experimental Medicine and Biology, vol 1217. Springer, Singapore. https://doi.org/10.1007/978-981-15-1025-0_2

Download citation

Publish with us

Policies and ethics