Skip to main content

Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions

  • Chapter
  • First Online:
Cullin-RING Ligases and Protein Neddylation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1217))

Abstract

Cullin-5 (Cul-5) was originally identified as an arginine vasopressin (AVP) receptor due to its homology to a vasopressin-activated calcium-mobilizing protein 1 (VACM-1). Cul-5 has subsequently gained much attention after being identified as the key component of CRL-5 (Cullin-RING ligase-5) that mediates ubiquitylation and degradation of several key cellular proteins associated with human cancers and viral infections. Structurally, Cul-5 interacts with the Elongin B/C complex, a RING finger protein (RBX2/SAG), and a SOCS protein to form a CRL-5 E3 ubiquitin ligase protein complex. CRL-5, by controlling turnover of a variety of substrates, is implicated in several biological processes and human diseases. Activation of CRL-5 requires Cul-5 neddylation, catalyzed by a neddylation enzyme cascade, consisting of the E1 NEDD8-activating enzyme (NAE), the E2 neddylation conjugating enzyme (UBE2F), and E3 neddylation ligase (RBX2/SAG). RBX2/SAG, therefore, serves as both Cul-5 neddylation E3 and CRL-5 ubiquitylation E3. Here, we review the current knowledge on CRL-5, its activation by the UBE2F-SAG, its regulation of various signaling pathways via substrate degradation, and its implications in human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APOBEC3G:

Apolipoprotein B editing complex 3G

APS:

Adapter protein with a pleckstrin homology and Src homology 2 domain

AVP:

Arginine vasopressin

CAND1:

Cullin-associated neddylation-dissociated 1

CH:

Cullin homology

CKB:

Cytosolic creatine kinase

CR:

Cullin repeats

CRL-5:

Cullin RING ligase 5

CRLs:

Cullin-RING ligases

CSN:

COP9 signalosome complex

CTD:

Carboxyl-terminal domain

Cul-5:

Cullin-5

DCNL:

The defective in cullin neddylation protein-like proteins

DSBs:

Double-stranded DNA breaks

EBV:

Epstein-Barr virus

ER:

Endoplasmic reticulum

FAK:

Focal adhesion kinase

HAdV:

Human adenoviruses

HIF-α:

Hypoxia-inducible factor-α

HIPK2:

Homeodomain-interacting protein kinase 2

HIV-1:

Human immunodeficiency virus-1

HSP90:

Heat shock protein 90

ID2:

Inhibitor of DNA binding 2

iNOS:

Inducible nitric oxide synthase

IRS4:

Insulin receptor substrate 4

JAK2:

Janus kinase 2

KSHV:

Kaposi’s sarcoma-associated herpesvirus

LANA:

Latency-associated nuclear antigen

LPS:

Lipopolysaccharide

LRRK2:

Leucine-rich repeat kinase 2

MCK:

Mitochondrial creatine kinase

MLL:

Mixed-lineage leukemia

MuHV-4:

Murid herpesvirus-4

NAE:

NEDD8-activating enzyme

NHEJ:

Nonhomologous end-joining DNA repair system

NSCLC:

Non-small lung cancers

NTD:

Amino-terminal domain

PTHrP:

Parathyroid hormone-related peptide

RBX2:

RING-box protein 2

ROS:

Reactive oxygen species

Rpb1:

RNA polymerase II B1

SAG:

Sensitive to apoptosis gene

SCLC:

Small cell lung cancers

SH2:

Src homology 2

SOCS:

Suppressor of cytokine signaling

TCGA:

The Cancer Genome Atlas

TNF-R2:

Tumor necrosis factor receptor 2

TRIAD1:

Two RING finger and double RING finger linked 1

VACM-1:

Vasopressin-activated calcium-mobilizing protein 1

References

  • Andresen CA, Smedegaard S, Sylvestersen KB, Svensson C, Iglesias-Gato D, Cazzamali G, Nielsen TK, Nielsen ML, Flores-Morales A (2014) Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem 289(4):2043–2054

    Article  CAS  PubMed  Google Scholar 

  • Antonioli M, Albiero F, Nazio F, Vescovo T, Perdomo AB, Corazzari M, Marsella C, Piselli P, Gretzmeier C, Dengjel J, Cecconi F, Piacentini M, Fimia GM (2014) AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Dev Cell 31(6):734–746

    Article  CAS  PubMed  Google Scholar 

  • Baker A, Rohleder KJ, Hanakahi LA, Ketner G (2007) Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 81(13):7034–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker T, Le-Trilling VTK, Trilling M (2019) Cellular cullin RING ubiquitin ligases: druggable host dependency factors of cytomegaloviruses. Int J Mol Sci 20(7)

    Article  PubMed Central  Google Scholar 

  • Bennett EJ, Rush J, Gygi SP, Harper JW (2010) Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143(6):951–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JS, Lukashchuk N, Sczaniecka-Clift M, Britton S, le Sage C, Calsou P, Beli P, Galanty Y, Jackson SP (2015) Neddylation promotes ubiquitylation and release of Ku from DNA-damage sites. Cell Rep 11(5):704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burande CF, Heuze ML, Lamsoul I, Monsarrat B, Uttenweiler-Joseph S, Lutz PG (2009) A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation. Mol Cell Proteomics 8(7):1719–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnatowska-Hledin MA, Spielman WS, Smith WL, Shi P, Meyer JM, Dewitt DL (1995) Expression cloning of an AVP-activated, calcium-mobilizing receptor from rabbit kidney medulla. Am J Phys 268(6 Pt 2):F1198–F1210

    CAS  Google Scholar 

  • Burnatowska-Hledin MA, Kossoris JB, Van Dort CJ, Shearer RL, Zhao P, Murrey DA, Abbott JL, Kan CE, Barney CC (2004) T47D breast cancer cell growth is inhibited by expression of VACM-1, a cul-5 gene. Biochem Biophys Res Commun 319(3):817–825

    Article  CAS  PubMed  Google Scholar 

  • Byrd PJ, Stankovic T, McConville CM, Smith AD, Cooper PR, Taylor AM (1997) Identification and analysis of expression of human VACM-1, a cullin gene family member located on chromosome 11q22-23. Genome Res 7(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Cai QL, Knight JS, Verma SC, Zald P, Robertson ES (2006) EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog 2(10):e116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao J, Wang Y, Dong R, Lin G, Zhang N, Wang J, Lin N, Gu Y, Ding L, Ying M, He Q, Yang B (2015) Hypoxia-induced WSB1 promotes the metastatic potential of osteosarcoma cells. Cancer Res 75(22):4839–4851

    Article  CAS  PubMed  Google Scholar 

  • Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5(9):739–751

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, Varambally S (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19(8):649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevallier-Greco A, Manet E, Chavrier P, Mosnier C, Daillie J, Sergeant A (1986) Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5(12):3243–3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DW, Seo YM, Kim EA, Sung KS, Ahn JW, Park SJ, Lee SR, Choi CY (2008) Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-1. J Biol Chem 283(8):4682–4689

    Article  CAS  PubMed  Google Scholar 

  • Choi YB, Son M, Park M, Shin J, Yun Y (2010) SOCS-6 negatively regulates T cell activation through targeting p56lck to proteasomal degradation. J Biol Chem 285(10):7271–7280

    Article  CAS  PubMed  Google Scholar 

  • Chung AS, Guan YJ, Yuan ZL, Albina JE, Chin YE (2005) Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol Cell Biol 25(11):4716–4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cukras S, Morffy N, Ohn T, Kee Y (2014) Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases. PLoS One 9(7):e101844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dallaire F, Blanchette P, Groitl P, Dobner T, Branton PE (2009) Identification of integrin alpha3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3 ubiquitin ligase complex. J Virol 83(11):5329–5338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang Y, Siew LM, Zheng YH (2008) APOBEC3G is degraded by the proteasomal pathway in a Vif-dependent manner without being polyubiquitylated. J Biol Chem 283(19):13124–13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Sepulveda P, Ilangumaran S, Rottapel R (2000) Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J Biol Chem 275(19):14005–14008

    Article  PubMed  Google Scholar 

  • Debrincat MA, Zhang JG, Willson TA, Silke J, Connolly LM, Simpson RJ, Alexander WS, Nicola NA, Kile BT, Hilton DJ (2007) Ankyrin repeat and suppressors of cytokine signaling box protein asb-9 targets creatine kinase B for degradation. J Biol Chem 282(7):4728–4737

    Article  CAS  PubMed  Google Scholar 

  • Dentice M, Bandyopadhyay A, Gereben B, Callebaut I, Christoffolete MA, Kim BW, Nissim S, Mornon JP, Zavacki AM, Zeold A, Capelo LP, Curcio-Morelli C, Ribeiro R, Harney JW, Tabin CJ, Bianco AC (2005) The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 7(7):698–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  • Devor EJ, Schickling BM, Reyes HD, Warrier A, Lindsay B, Goodheart MJ, Santillan DA, Leslie KK (2016) Cullin-5, a ubiquitin ligase scaffold protein, is significantly underexpressed in endometrial adenocarcinomas and is a target of miR-182. Oncol Rep 35(4):2461–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diks SH, Sartori MA, da Silva JL, Hillebrands RJ, Bink HHV, van Rooijen C, Brouwers A, Chitnis AB, Peppelenbosch MP, Zivkovic D (2008) d-Asb11 is an essential mediator of canonical Delta-Notch signalling. Nat Cell Biol 10(10):1190–1198

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Wang Y, Aviram M, Swaroop M, Loo JA, Bian J, Tian Y, Mueller T, Bisgaier CL, Sun Y (1999) SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents. Mol Cell Biol 19(4):3145–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan S, Skaar JR, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y, Pagano M (2011) mTOR generates an auto-amplification loop by triggering the betaTrCP- and CK1alpha-dependent degradation of DEPTOR. Mol Cell 44(2):317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA (2008) Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134(6):995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich ES, Wang T, Luo K, Xiao Z, Niewiadomska AM, Martinez T, Xu W, Neckers L, Yu XF (2009) Regulation of Hsp90 client proteins by a Cullin5-RING E3 ubiquitin ligase. Proc Natl Acad Sci U S A 106(48):20330–20335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eletr ZM, Huang DT, Duda DM, Schulman BA, Kuhlman B (2005) E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat Struct Mol Biol 12(10):933–934

    Article  CAS  PubMed  Google Scholar 

  • Enchev RI, Schulman BA, Peter M (2015) Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol 16(1):30–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387(6636):921–924

    Article  CAS  PubMed  Google Scholar 

  • Fay MJ, Longo KA, Karathanasis GA, Shope DM, Mandernach CJ, Leong JR, Hicks A, Pherson K, Husain A (2003) Analysis of CUL-5 expression in breast epithelial cells, breast cancer cell lines, normal tissues and tumor tissues. Mol Cancer 2:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Frantsve J, Schwaller J, Sternberg DW, Kutok J, Gilliland DG (2001) Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol 21(10):3547–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao D, Inuzuka H, Tan MK, Fukushima H, Locasale JW, Liu P, Wan L, Zhai B, Chin YR, Shaik S, Lyssiotis CA, Gygi SP, Toker A, Cantley LC, Asara JM, Harper JW, Wei W (2011) mTOR drives its own activation via SCF(betaTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 44(2):290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Shen S, Li Y, Bi R, Zhang N, Zheng W, Deng Y, Yang Y, Yu XF, Wang C, Wei W (2019) Adenovirus oncoprotein E4orf6 triggers Cullin5 neddylation to activate the CLR5 E3 ligase for p53 degradation. Biochem Biophys Res Commun 516(4):1242–1247

    Article  CAS  PubMed  Google Scholar 

  • Heuze ML, Lamsoul I, Baldassarre M, Lad Y, Leveque S, Razinia Z, Moog-Lutz C, Calderwood DA, Lutz PG (2008) ASB2 targets filamins A and B to proteasomal degradation. Blood 112(13):5130–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS, Starr R, Nicholson SE, Metcalf D, Nicola NA (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci U S A 95(1):114–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DT, Miller DW, Mathew R, Cassell R, Holton JM, Roussel MF, Schulman BA (2004) A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat Struct Mol Biol 11(10):927–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF, Schulman BA (2009) E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell 33(4):483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes DJ, Wood JJ, Jackson BR, Baquero-Perez B, Whitehouse A (2015) NEDDylation is essential for Kaposi’s sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target. PLoS Pathog 11(3):e1004771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inagaki-Ohara K, Kondo T, Ito M, Yoshimura A (2013) SOCS, inflammation, and cancer. JAKSTAT 2(3):e24053

    PubMed  PubMed Central  Google Scholar 

  • Jia L, Sun Y (2009) RBX1/ROC1-SCF E3 ubiquitin ligase is required for mouse embryogenesis and cancer cell survival. Cell Div 4:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia L, Yang J, Hao X, Zheng M, He H, Xiong X, Xu L, Sun Y (2010) Validation of SAG/RBX2/ROC2 E3 ubiquitin ligase as an anticancer and radiosensitizing target. Clin Cancer Res 16(3):814–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Zhang WW, Liu P, Yu W, Liu T, Yu J (2017) Dysregulation of SOCS-mediated negative feedback of cytokine signaling in carcinogenesis and its significance in cancer treatment. Front Immunol 8:70

    PubMed  PubMed Central  Google Scholar 

  • Johnson AE, Le IP, Buchwalter A, Burnatowska-Hledin MA (2007) Estrogen-dependent growth and estrogen receptor (ER)-alpha concentration in T47D breast cancer cells are inhibited by VACM-1, a cul 5 gene. Mol Cell Biochem 301(1–2):13–20

    Article  CAS  PubMed  Google Scholar 

  • Kalla C, Scheuermann MO, Kube I, Schlotter M, Mertens D, Dohner H, Stilgenbauer S, Lichter P (2007) Analysis of 11q22-q23 deletion target genes in B-cell chronic lymphocytic leukaemia: evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. Eur J Cancer 43(8):1328–1335

    Article  CAS  PubMed  Google Scholar 

  • Kamio M, Yoshida T, Ogata H, Douchi T, Nagata Y, Inoue M, Hasegawa M, Yonemitsu Y, Yoshimura A (2004) SOCS1 [corrected] inhibits HPV-E7-mediated transformation by inducing degradation of E7 protein. Oncogene 23(17):3107–3115

    Article  CAS  PubMed  Google Scholar 

  • Kamizono S, Hanada T, Yasukawa H, Minoguchi S, Kato R, Minoguchi M, Hattori K, Hatakeyama S, Yada M, Morita S, Kitamura T, Kato H, Nakayama K, Yoshimura A (2001) The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem 276(16):12530–12538

    Article  CAS  PubMed  Google Scholar 

  • Kamura T, Burian D, Yan Q, Schmidt SL, Lane WS, Querido E, Branton PE, Shilatifard A, Conaway RC, Conaway JW (2001) Muf1, a novel Elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbx1 to reconstitute a ubiquitin ligase. J Biol Chem 276(32):29748–29753

    Article  CAS  PubMed  Google Scholar 

  • Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway RC, Conaway JW, Nakayama KI (2004) VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18(24):3055–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazi JU, Kabir NN, Flores-Morales A, Ronnstrand L (2014) SOCS proteins in regulation of receptor tyrosine kinase signaling. Cell Mol Life Sci 71(17):3297–3310

    Article  CAS  PubMed  Google Scholar 

  • Kelleher DJ, Kreibich G, Gilmore R (1992) Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 69(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Keller KE, Wirtz MK (2017) Working your SOCS off: the role of ASB10 and protein degradation pathways in glaucoma. Exp Eye Res 158:154–160

    Article  CAS  PubMed  Google Scholar 

  • Kelsall IR, Duda DM, Olszewski JL, Hofmann K, Knebel A, Langevin F, Wood N, Wightman M, Schulman BA, Alpi AF (2013) TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO J 32(21):2848–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kile BT, Metcalf D, Mifsud S, DiRago L, Nicola NA, Hilton DJ, Alexander WS (2001) Functional analysis of Asb-1 using genetic modification in mice. Mol Cell Biol 21(18):6189–6197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kile BT, Schulman BA, Alexander WS, Nicola NA, Martin HM, Hilton DJ (2002) The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 27(5):235–241

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Lee SH, Jeong MS, Sohn EJ, Kim MJ, Jeong HJ, An JJ, Jang SH, Won MH, Hwang IK, Cho SW, Kang TC, Lee KS, Park J, Yoo KY, Eum WS, Choi SY (2010) Transduced Tat-SAG fusion protein protects against oxidative stress and brain ischemic insult. Free Radic Biol Med 48(7):969–977

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Lee SB, Jang J, Yi SY, Kim SH, Han SA, Lee JM, Tong SY, Vincelette ND, Gao B, Yin P, Evans D, Choi DW, Qin B, Liu T, Zhang H, Deng M, Jen J, Zhang J, Wang L, Lou Z (2015) WSB1 promotes tumor metastasis by inducing pVHL degradation. Genes Dev 29(21):2244–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Lee SB, Yi SY, Han SA, Kim SH, Lee JM, Tong SY, Yin P, Gao B, Zhang J, Lou Z (2017) WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation. Cell Res 27(2):274–293

    Article  CAS  PubMed  Google Scholar 

  • Kohroki J, Nishiyama T, Nakamura T, Masuho Y (2005) ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Lett 579(30):6796–6802

    Article  CAS  PubMed  Google Scholar 

  • Kraus RJ, Yu X, Cordes BA, Sathiamoorthi S, Iempridee T, Nawandar DM, Ma S, Romero-Masters JC, McChesney KG, Lin Z, Makielski KR, Lee DL, Lambert PF, Johannsen EC, Kenney SC, Mertz JE (2017) Hypoxia-inducible factor-1alpha plays roles in Epstein-Barr virus’s natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog 13(6):e1006404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuang P, Tan M, Zhou W, Zhang Q, Sun Y (2016) SAG/RBX2 E3 ligase complexes with UBCH10 and UBE2S E2s to ubiquitylate beta-TrCP1 via K11-linkage for degradation. Sci Rep 6:37441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang Z, Lewis RS, Curtis JM, Zhan Y, Saunders BM, Babon JJ, Kolesnik TB, Low A, Masters SL, Willson TA, Kedzierski L, Yao S, Handman E, Norton RS, Nicholson SE (2010) The SPRY domain-containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. J Cell Biol 190(1):129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon S, Kim D, Rhee JW, Park JA, Kim DW, Kim DS, Lee Y, Kwon HJ (2010) ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function. BMC Biol 8:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamsoul I, Uttenweiler-Joseph S, Moog-Lutz C, Lutz PG (2016) Cullin 5-RING E3 ubiquitin ligases, new therapeutic targets? Biochimie 122:339–347

    Article  CAS  PubMed  Google Scholar 

  • Le-Trilling VT, Megger DA, Katschinski B, Landsberg CD, Ruckborn MU, Tao S, Krawczyk A, Bayer W, Drexler I, Tenbusch M, Sitek B, Trilling M (2016) Broad and potent antiviral activity of the NAE inhibitor MLN4924. Sci Rep 6:19977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis RS, Kolesnik TB, Kuang Z, D’Cruz AA, Blewitt ME, Masters SL, Low A, Willson T, Norton RS, Nicholson SE (2011) TLR regulation of SPSB1 controls inducible nitric oxide synthase induction. J Immunol 187(7):3798–3805

    Article  CAS  PubMed  Google Scholar 

  • Li H, Tan M, Jia L, Wei D, Zhao Y, Chen G, Xu J, Zhao L, Thomas D, Beer DG, Sun Y (2014) Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis. J Clin Invest 124(2):835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JY, Chai B, Zhang W, Wu X, Zhang C, Fritze D, Xia Z, Patterson C, Mulholland MW (2011) Ankyrin repeat and SOCS box containing protein 4 (Asb-4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation. BMC Neurosci 12:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SY, Tan AH, Ahmad-Annuar A, Klein C, Tan LCS, Rosales RL, Bhidayasiri R, Wu YR, Shang HF, Evans AH, Pal PK, Hattori N, Tan CT, Jeon B, Tan EK, Lang AE (2019) Parkinson’s disease in the Western Pacific region. Lancet Neurol

    Google Scholar 

  • Linossi EM, Nicholson SE (2015) Kinase inhibition, competitive binding and proteasomal degradation: resolving the molecular function of the suppressor of cytokine signaling (SOCS) proteins. Immunol Rev 266(1):123–133

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Sarkis PT, Luo K, Yu Y, Yu XF (2005) Regulation of Apobec3F and human immunodeficiency virus type 1 Vif by Vif-Cul5-ElonB/C E3 ubiquitin ligase. J Virol 79(15):9579–9587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu E, Cote JF, Vuori K (2003) Negative regulation of FAK signaling by SOCS proteins. EMBO J 22(19):5036–5046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Nheu T, Luwor R, Nicholson SE, Zhu HJ (2015) SPSB1, a novel negative regulator of the transforming growth factor-beta signaling pathway targeting the type II receptor. J Biol Chem 290(29):17894–17908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhou H, Zhu R, Ding F, Li Y, Cao X, Liu Z (2018) SPSB3 targets SNAIL for degradation in GSK-3beta phosphorylation-dependent manner and regulates metastasis. Oncogene 37(6):768–776

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein CJ, Padalko E (2004) iNOS (NOS2) at a glance. J Cell Sci 117(Pt 14):2865–2867

    Article  CAS  PubMed  Google Scholar 

  • Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Shevchenko A, Deshaies RJ (2001) Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292(5520):1382–1385

    Article  CAS  PubMed  Google Scholar 

  • Mahrour N, Redwine WB, Florens L, Swanson SK, Martin-Brown S, Bradford WD, Staehling-Hampton K, Washburn MP, Conaway RC, Conaway JW (2008) Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases. J Biol Chem 283(12):8005–8013

    Article  CAS  PubMed  Google Scholar 

  • Mansell A, Smith R, Doyle SL, Gray P, Fenner JE, Crack PJ, Nicholson SE, Hilton DJ, O’Neill LA, Hertzog PJ (2006) Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol 7(2):148–155

    Article  CAS  PubMed  Google Scholar 

  • Marteijn JA, van Emst L, Erpelinck-Verschueren CA, Nikoloski G, Menke A, de Witte T, Lowenberg B, Jansen JH, van der Reijden BA (2005) The E3 ubiquitin-protein ligase Triad1 inhibits clonogenic growth of primary myeloid progenitor cells. Blood 106(13):4114–4123

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Nishiya T, Maekawa S, Horinouchi T, Ogasawara K, Uehara T, Miwa S (2011) The ECS(SPSB) E3 ubiquitin ligase is the master regulator of the lifetime of inducible nitric-oxide synthase. Biochem Biophys Res Commun 409(1):46–51

    Article  CAS  PubMed  Google Scholar 

  • Monda JK, Scott DC, Miller DJ, Lydeard J, King D, Harper JW, Bennett EJ, Schulman BA (2013) Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Nayak R, Pintel DJ (2007) Positive and negative effects of adenovirus type 5 helper functions on adeno-associated virus type 5 (AAV5) protein accumulation govern AAV5 virus production. J Virol 81(5):2205–2212

    Article  CAS  PubMed  Google Scholar 

  • Nayak R, Farris KD, Pintel DJ (2008) E4Orf6-E1B-55k-dependent degradation of de novo-generated adeno-associated virus type 5 Rep52 and capsid proteins employs a cullin 5-containing E3 ligase complex. J Virol 82(7):3803–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiya T, Matsumoto K, Maekawa S, Kajita E, Horinouchi T, Fujimuro M, Ogasawara K, Uehara T, Miwa S (2011) Regulation of inducible nitric-oxide synthase by the SPRY domain- and SOCS box-containing proteins. J Biol Chem 286(11):9009–9019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nucifora FC Jr, Nucifora LG, Ng CH, Arbez N, Guo Y, Roby E, Shani V, Engelender S, Wei D, Wang XF, Li T, Moore DJ, Pletnikova O, Troncoso JC, Sawa A, Dawson TM, Smith W, Lim KL, Ross CA (2016) Ubiquitination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nat Commun 7:11792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288(5468):1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Ohta T, Michel JJ, Schottelius AJ, Xiong Y (1999) ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 3(4):535–541

    Article  CAS  PubMed  Google Scholar 

  • Okumura F, Matsuzaki M, Nakatsukasa K, Kamura T (2012) The role of Elongin BC-containing ubiquitin ligases. Front Oncol 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Orr SJ, Morgan NM, Elliott J, Burrows JF, Scott CJ, McVicar DW, Johnston JA (2007) CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood 109(3):1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Parrillas V, Martinez-Munoz L, Holgado BL, Kumar A, Cascio G, Lucas P, Rodriguez-Frade JM, Malumbres M, Carrera AC, van Wely KH, Mellado M (2013) Suppressor of cytokine signaling 1 blocks mitosis in human melanoma cells. Cell Mol Life Sci 70(3):545–558

    Article  CAS  PubMed  Google Scholar 

  • Perfetto L, Gherardini PF, Davey NE, Diella F, Helmer-Citterich M, Cesareni G (2013) Exploring the diversity of SPRY/B30.2-mediated interactions. Trends Biochem Sci 38(1):38–46

    Article  CAS  PubMed  Google Scholar 

  • Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Puca R, Nardinocchi L, Sacchi A, Rechavi G, Givol D, D’Orazi G (2009) HIPK2 modulates p53 activity towards pro-apoptotic transcription. Mol Cancer 8:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE (2001) Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15(23):3104–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabut G, Peter M (2008) Function and regulation of protein neddylation. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9(10):969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues L, Filipe J, Seldon MP, Fonseca L, Anrather J, Soares MP, Simas JP (2009) Termination of NF-kappaB activity through a gammaherpesvirus protein that assembles an EC5S ubiquitin-ligase. EMBO J 28(9):1283–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277(44):42394–42398

    Article  CAS  PubMed  Google Scholar 

  • Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S, Lu KP (2003) Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12(6):1413–1426

    Article  CAS  PubMed  Google Scholar 

  • Samant RS, Clarke PA, Workman P (2014) E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells. Proc Natl Acad Sci U S A 111(18):6834–6839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarikas A, Hartmann T, Pan ZQ (2011) The cullin protein family. Genome Biol 12(4):220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Shirata N, Kudoh A, Iwahori S, Nakayama S, Murata T, Isomura H, Nishiyama Y, Tsurumi T (2009) Expression of Epstein-Barr virus BZLF1 immediate-early protein induces p53 degradation independent of MDM2, leading to repression of p53-mediated transcription. Virology 388(1):204–211

    Article  CAS  PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9(11):1404–1407

    Article  CAS  PubMed  Google Scholar 

  • Simas JP, Efstathiou S (1998) Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol 6(7):276–282

    Article  CAS  PubMed  Google Scholar 

  • Simo S, Cooper JA (2013) Rbx2 regulates neuronal migration through different cullin 5-RING ligase adaptors. Dev Cell 27(4):399–411

    Article  CAS  PubMed  Google Scholar 

  • Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, Cullis CA, Doucette A, Garnsey JJ, Gaulin JL, Gershman RE, Lublinsky AR, McDonald A, Mizutani H, Narayanan U, Olhava EJ, Peluso S, Rezaei M, Sintchak MD, Talreja T, Thomas MP, Traore T, Vyskocil S, Weatherhead GS, Yu J, Zhang J, Dick LR, Claiborne CF, Rolfe M, Bolen JB, Langston SP (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458(7239):732–736

    Article  CAS  PubMed  Google Scholar 

  • Stanley DJ, Bartholomeeusen K, Crosby DC, Kim DY, Kwon E, Yen L, Cartozo NC, Li M, Jager S, Mason-Herr J, Hayashi F, Yokoyama S, Krogan NJ, Harris RS, Peterlin BM, Gross JD (2012) Inhibition of a NEDD8 cascade restores restriction of HIV by APOBEC3G. PLoS Pathog 8(12):e1003085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL (1998) The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16(3):349–357

    Article  CAS  PubMed  Google Scholar 

  • Stracker TH, Carson CT, Weitzman MD (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418(6895):348–352

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Li H (2013) Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase. Protein Cell 4(2):103–116

    Article  PubMed  Google Scholar 

  • Suspene R, Sommer P, Henry M, Ferris S, Guetard D, Pochet S, Chester A, Navaratnam N, Wain-Hobson S, Vartanian JP (2004) APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32(8):2421–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaroop M, Wang Y, Miller P, Duan H, Jatkoe T, Madore S, Sun Y (2000) Yeast homolog of human SAG/ROC2/Rbx2/Hrt2 is essential for cell growth, but not for germination: chip profiling implicates its role in cell cycle regulation. Oncogene 19:2855–2866

    Article  CAS  PubMed  Google Scholar 

  • Swaroop M, Gosink M, Sun Y (2001) SAG/ROC2/Rbx2/Hrt2, a component of SCF E3 ubiquitin ligase: genomic structure, a splicing variant, and two family pseudogenes. DNA Cell Biol 20(7):425–434

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150(5):987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Gu Q, He H, Pamarthy D, Semenza GL, Sun Y (2008) SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1 alpha ubiquitination and degradation. Oncogene 27(10):1404–1411

    Article  CAS  PubMed  Google Scholar 

  • Tan M, Davis SW, Saunders TL, Zhu Y, Sun Y (2009) RBX1/ROC1 disruption results in early embryonic lethality due to proliferation failure, partially rescued by simultaneous loss of p27. Proc Natl Acad Sci U S A 106(15):6203–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Zhu Y, Kovacev J, Zhao Y, Pan ZQ, Spitz DR, Sun Y (2010) Disruption of Sag/Rbx2/Roc2 induces radiosensitization by increasing ROS levels and blocking NF-kappaB activation in mouse embryonic stem cells. Free Radic Biol Med 49(6):976–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Zhao Y, Kim SJ, Liu M, Jia L, Saunders TL, Zhu Y, Sun Y (2011) SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation. Dev Cell 21(6):1062–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Xu J, Siddiqui J, Feng F, Sun Y (2016) Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis. Mol Cancer 15(1):81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tapia-Laliena MA, Korzeniewski N, Pena-Llopis S, Scholl C, Frohling S, Hohenfellner M, Duensing A, Duensing S (2019) Cullin 5 is a novel candidate tumor suppressor in renal cell carcinoma involved in the maintenance of genome stability. Oncogene 8(1):4

    Article  CAS  Google Scholar 

  • Teckchandani A, Laszlo GS, Simo S, Shah K, Pilling C, Strait AA, Cooper JA (2014) Cullin 5 destabilizes Cas to inhibit Src-dependent cell transformation. J Cell Sci 127(Pt 3):509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4(6):496–505

    Article  CAS  PubMed  Google Scholar 

  • Townley-Tilson WH, Wu Y, Ferguson JE 3rd, Patterson C (2014) The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2. PLoS One 9(2):e89451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uematsu K, Okumura F, Tonogai S, Joo-Okumura A, Alemayehu DH, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T (2016) ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation. J Cell Biol 215(1):95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O (2002) Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 22(10):3316–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Muntean AG, Hess JL (2012) ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood 119(5):1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang X, Wang W, Zhang J, Wang J, Wang C, Lv M, Zuo T, Liu D, Zhang H, Wu J, Yu B, Kong W, Wu H, Yu X (2015) Both Rbx1 and Rbx2 exhibit a functional role in the HIV-1 Vif-Cullin5 E3 ligase complex in vitro. Biochem Biophys Res Commun 461(4):624–629

    Article  CAS  PubMed  Google Scholar 

  • Wilcox A, Katsanakis KD, Bheda F, Pillay TS (2004) Asb6, an adipocyte-specific ankyrin and SOCS box protein, interacts with APS to enable recruitment of elongins B and C to the insulin receptor signaling complex. J Biol Chem 279(37):38881–38888

    Article  CAS  PubMed  Google Scholar 

  • Xie CM, Wei D, Zhao L, Marchetto S, Mei L, Borg JP, Sun Y (2015) Erbin is a novel substrate of the Sag-betaTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. J Cell Biol 209(5):721–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XM, Wang XB, Chen MM, Liu T, Li YX, Jia WH, Liu M, Li X, Tang H (2012) MicroRNA-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Lett 322(2):148–158

    Article  CAS  PubMed  Google Scholar 

  • Yang GY, Pang L, Ge HL, Tan M, Ye W, Liu XH, Huang FP, Wu DC, Che XM, Song Y, Wen R, Sun Y (2001) Attenuation of ischemia-induced mouse brain injury by SAG, a redox- inducible antioxidant protein. J Cereb Blood Flow Metab 21(6):722–733

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa T, Kamura T, Kitajima S, Conaway RC, Conaway JW, Aso T (2008) Mammalian Elongin A complex mediates DNA-damage-induced ubiquitylation and degradation of Rpb1. EMBO J 27(24):3256–3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302(5647):1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Gong L, Su D, Jin Y, Guo C, Yue M, Yao S, Qin Z, Ye Y, Tang Y, Wu Q, Zhang J, Cui B, Ding Q, Huang H, Hu L, Chen Y, Zhang P, Hu G, Chen L, Wong KK, Gao D, Ji H (2019) Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin beta1. J Clin Invest 129(3):972–987

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Xiong X, Sun Y (2011) DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 44(2):304–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Zhang W, Sun Y, Jia L (2018a) Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal 44:92–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Xu J, Li H, Xu M, Chen ZJ, Wei W, Pan Z, Sun Y (2017) Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage. Clin Cancer Res 23(4):1104–1116

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Xu J, Tan M, Li H, Li H, Wei W, Sun Y (2018b) UBE2M is a stress-inducible dual E2 for neddylation and ubiquitylation that promotes targeted degradation of UBE2F. Mol Cell 70(6):1008–1024.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Li L, Hou D, Ouyang Y, Guo X, Wang Y, Li J, Gong K (2019) MicroRNA-19a regulates the proliferation, migration and invasion of human gastric cancer cells by targeting CUL5. Arch Biochem Biophys 662:93–100

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Wang L, Hao R, Zhao B, Sun L, Ye RD (2016) Cutting edge: a Cullin-5-TRAF6 interaction promotes TRAF6 polyubiquitination and lipopolysaccharide signaling. J Immunol 197(1):21–26

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, S., Sun, Y. (2020). Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions. In: Sun, Y., Wei, W., Jin, J. (eds) Cullin-RING Ligases and Protein Neddylation. Advances in Experimental Medicine and Biology, vol 1217. Springer, Singapore. https://doi.org/10.1007/978-981-15-1025-0_16

Download citation

Publish with us

Policies and ethics