Skip to main content

The Roles of Cullin-2 E3 Ubiquitin Ligase Complex in Cancer

  • Chapter
  • First Online:
Cullin-RING Ligases and Protein Neddylation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1217))

Abstract

Posttranslational protein modifications play an important role in regulating protein stability and cellular function. There are at least eight Cullin family members. Among them, Cullin-2 forms a functional E3 ligase complex with elongin B, elongin C, RING-box protein 1 (RBX1, also called ROC1), as well as the substrate recognition subunit (SRS) to promote the substrate ubiquitination and degradation. In this book chapter, we will review Cullin-2 E3 ligase complexes that include various SRS proteins, including von Hippel Lindau (pVHL), leucine-rich repeat protein-1 (LRR-1), preferentially expressed antigen of melanoma (PRAME), sex-determining protein FEM-1 and early embryogenesis protein ZYG-11. We will focus on the VHL signaling pathway in clear cell renal cell carcinoma (ccRCC), which may reveal various therapeutic avenues in treating this lethal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ankrd37:

Ankyrin repeat domain 37

APC/C:

Anaphase-promoting complex/cyclosome

ARNT:

Aryl hydrocarbon receptor nuclear translocator

ccRCC:

Clear cell renal cell carcinoma

ChIP-Seq:

ChIP assays followed by deep sequencing

CKI:

Cip/Kip CDK-inhibitor

COL4α2:

Collagen IV alpha 2

CRL:

Cullin-based ringlike

ECM:

Extracellular matrix

EglNs:

Egl nine homologs

GLUT1:

Glucose uptake and metabolism

HREs:

Hypoxia-responsive elements

LRR-1:

Leucine-rich repeat protein-1

MDM2:

Double minute 2 homolog

PD1:

Programmed cell death protein 1

PDL1:

Programmed cell death protein 1 ligand 1

PI3K:

Phosphoinositide 3-kinase

PKB:

Protein kinase B

PRAME:

Preferentially expressed antigen of melanoma

pVHL:

Von Hippel–Lindau protein

RBX1:

RING-box protein 1

SRS:

Substrate recognition subunit

ZHX2:

Zinc fingers and homeoboxes 2

References

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase b by insulin and igf-1. EMBO J 15:6541–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson K, Nordquist KA, Gao XL, Hicks KC, Zhai B, Gygi SP, Patel TB (2011) Regulation of cellular levels of sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins. J Biol Chem 286:42027–42036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J, Guan YL, Liu EL, Sergueeva AI, Miasnikova GY, Mole D, Maxwell PH, Stockton DW, Semenza GL, Prchal JT (2002) Disruption of oxygen homeostasis underlies congenital chuvash polycythemia. Nat Genet 32:614–621

    Article  CAS  PubMed  Google Scholar 

  • Balachandran RS, Heighington CS, Starostina NG, Anderson JW, Owen DL, Vasudevan S, Kipreos ET (2016) The ubiquitin ligase crl2zyg11 targets cyclin b1 for degradation in a conserved pathway that facilitates mitotic slippage. J Cell Biol 215:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binderup MLM (2018) Von Hippel-Lindau disease: diagnosis and factors influencing disease outcome. Dan Med J 65

    Google Scholar 

  • Bradsher JN, Jackson KW, Conaway RC, Conaway JW (1993) Rna polymerase ii transcription factor siii. I Identification, purification, and properties. J Biol Chem 268:25587–25593

    CAS  PubMed  Google Scholar 

  • Burger J, Merlet J, Tavernier N, Richaudeau B, Arnold A, Ciosk R, Bowerman B, Pintard L (2013) Crl2(lrr-1) e3-ligase regulates proliferation and progression through meiosis in the caenorhabditis elegans germline. PLoS Genet 9:e1003375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W, Yang H (2016) The structure and regulation of cullin 2 based e3 ubiquitin ligases and their biological functions. Cell Div 11(7)

    Google Scholar 

  • Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49

    Article  CAS  Google Scholar 

  • Cardote TAF, Gadd MS, Ciulli A (2017) Crystal structure of the cul2-rbx1-elobc-vhl ubiquitin ligase complex. Structure 25:901–911 e903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E (1998) Role of hif-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    Article  CAS  PubMed  Google Scholar 

  • Casciello F, Al-Ejeh F, Kelly G, Brennan DJ, Ngiow SF, Young A, Stoll T, Windloch K, Hill MM, Smyth MJ, Gannon F, Lee JS (2017) G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci U S A 114:7077–7082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty AA, Nakamura E, Qi J, Creech A, Jaffe JD, Paulk J, Novak JS, Nagulapalli K, McBrayer SK, Cowley GS, Pineda J, Song JX, Wang YYE, Carr SA, Root DE, Signoretti S, Bradner JE, Kaelin WG (2017) Hif activation causes synthetic lethality between the vhl tumor suppressor and the ezh1 histone methyltransferase. Sci Transl Med 9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen JX, Liu F, Li H, Archacld S, Gao M, Liu Y, Liao SJ, Huang M, Wang JX, Yu SS, Li C, Tang ZH, Liu MG (2015) Pvhl interacts with ceramide kinase like (cerkl) protein and ubiquitinates it for oxygen dependent proteasomal degradation. Cell Signal 27:2314–2323

    Article  CAS  PubMed  Google Scholar 

  • Chittiboina P, Lonser RR (2015) Von Hippel-Lindau disease. Handb Clin Neurol 132:139–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27:281–298

    Article  CAS  PubMed  Google Scholar 

  • Conaway JW, Kamura T, Conaway RC (1998) The elongin bc complex and the von Hippel-Lindau tumor suppressor protein. Biochim Biophys Acta 1377:M49–M54

    CAS  PubMed  Google Scholar 

  • Costessi A, Mahrour N, Tijchon E, Stunnenberg R, Stoel MA, Jansen PW, Sela D, Martin-Brown S, Washburn MP, Florens L, Conaway JW, Conaway RC, Stunnenberg HG (2011) The tumour antigen prame is a subunit of a cul2 ubiquitin ligase and associates with active nfy promoters. EMBO J 30:3786–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT (2006) Prolyl hydroxylase-1 negatively regulates ikappab kinase-beta, giving insight into hypoxia-induced nfkappab activity. Proc Natl Acad Sci U S A 103:18154–18159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshaies RJ, Joazeiro CA (2009) Ring domain e3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  • Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Invest 123:3685–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolan P, Clynes M, Kennedy S, Mehta JP, Crown J, O’Driscoll L (2008) Prevalence and prognostic and predictive relevance of prame in breast cancer. Breast Cancer Res Treat 109:359–365

    Article  CAS  PubMed  Google Scholar 

  • Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R (2005) The human tumor antigen prame is a dominant repressor of retinoic acid receptor signaling. Cell 122:835–847

    Article  CAS  PubMed  Google Scholar 

  • Epping MT, Hart AA, Glas AM, Krijgsman O, Bernards R (2008) Prame expression and clinical outcome of breast cancer. Br J Cancer 99:398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilder AS, Chen YB, Jackson RJ 3rd, Jiang J, Maher JF (2013) Fem1b promotes ubiquitylation and suppresses transcriptional activity of gli1. Biochem Biophys Res Commun 440:431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosfeld A, Stolze IP, Cockman ME, Pugh CW, Edelmann M, Kessler B, Bullock AN, Ratcliffe PJ, Masson N (2007) Interaction of hydroxylated collagen iv with the von Hippel-Lindau tumor suppressor. J Biol Chem 282:13264–13269

    Article  CAS  PubMed  Google Scholar 

  • Guo JP, Chakraborty AA, Liu PD, Gan WJ, Zheng XN, Inuzuka H, Wang B, Zhang JF, Zhang LL, Yuan M, Novak J, Cheng JQ, Toker A, Signoretti S, Zhang Q, Asara JM, Kaelin WG, Wei WY (2016) Pvhl suppresses kinase activity of akt in a proline-hydroxylation-dependent manner. Science 353:929–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon BP, Lee JE, Raught B, Ohh M (2016) Oxygen-dependent regulation of erythropoietin receptor turnover and signaling. J Biol Chem 291:7357–7372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W (2003) Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pvhl. Nat Cell Biol 5:64–70

    Article  CAS  PubMed  Google Scholar 

  • Hoffman MA, Ohh M, Yang HF, Klco JM, Ivan M, Kaelin WG (2001) Von Hippel-Lindau protein mutants linked to type 2c vhl disease preserve the ability to downregulate hif. Hum Mol Genet 10:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V (2017) Renal cell carcinoma. Nat Rev Dis Primers 3

    Google Scholar 

  • Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IGH, Barbarash O, Gokmen E, O’Toole T, Lustgarten S, Moore L, Motzer RJ (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New Engl J Med 356:2271–2281

    Article  CAS  PubMed  Google Scholar 

  • Iliopoulos O, Ohh M, Kaelin WG Jr (1998) Pvhl19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc Natl Acad Sci U S A 95:11661–11666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jilg CA, Neumann HPH, Glasker S, Schafer O, Leiber C, Ardelt PU, Schwardt M, Schultze-Seemann W (2012) Nephron sparing surgery in von Hippel-Lindau associated renal cell carcinoma; clinicopathological long-term follow-up. Fam Cancer 11:387–394

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG (2002) Molecular basis of the vhl hereditary cancer syndrome. Nat Rev Cancer 2:673–682

    Article  CAS  PubMed  Google Scholar 

  • Kamura T, Sato S, Haque D, Liu L, Kaelin WG Jr, Conaway RC, Conaway JW (1998) The elongin bc complex interacts with the conserved socs-box motif present in members of the socs, ras, wd-40 repeat, and ankyrin repeat families. Genes Dev 12:3872–3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway RC, Conaway JW, Nakayama KI (2004) Vhl-box and socs-box domains determine binding specificity for cul2-rbx1 and cul5-rbx2 modules of ubiquitin ligases. Genes Dev 18:3055–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H, Pisto T, Saarela M, Skotheim RI, Bjorkman M, Mpindi JP, Haapa-Paananen S, Vainio P, Edgren H, Wolf M, Astola J, Nees M, Hautaniemi S, Kallioniemi O (2008) Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol 9:R139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim WY, Kaelin WG (2004) Role of vhl gene mutation in human cancer. J Clin Oncol 22:4991–5004

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Zschiedrich S (2018) Renal cell carcinoma in von Hippel-Lindau disease-from tumor genetics to novel therapeutic strategies. Front Pediatr 6

    Google Scholar 

  • Kobet E, Zeng X, Zhu Y, Keller D, Lu H (2000) Mdm2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci U S A 97:12547–12552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M, Giaccia A (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21:1297–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurban G, Duplan E, Ramlal N, Hudon V, Sado Y, Ninomiya Y, Pause A (2008) Collagen matrix assembly is driven by the interaction of von Hippel-Lindau tumor suppressor protein with hydroxylated collagen iv alpha 2. Oncogene 27:1004–1012

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML, Sanchez Y, Conaway JW, Conaway RC, Czyzyk-Krzeska MF (2003) Von Hippel-Lindau protein binds hyperphosphorylated large subunit of rna polymerase ii through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci U S A 100:2706–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Dong SM, Park WS, Yoo NJ, Kim CS, Jang JJ, Chi JG, Zbar B, Lubensky IA, Linehan WM, Vortmeyer AO, Zhuang Z (1998) Loss of heterozygosity and somatic mutations of the vhl tumor suppressor gene in sporadic cerebellar hemangioblastomas. Cancer Res 58:504–508

    CAS  PubMed  Google Scholar 

  • Lee S, Neumann M, Stearman R, Stauber R, Pause A, Pavlakis GN, Klausner RD (1999) Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol 19:1486–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, Farese RV, Freeman RS, Carter BD, Kaelin WG Jr, Schlisio S (2005) Neuronal apoptosis linked to egln3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8:155–167

    Article  PubMed  CAS  Google Scholar 

  • Lee DC, Sohn HA, Park ZY, Oh S, Kang YK, Lee KM, Kang M, Jang YJ, Yang SJ, Hong YK, Noh H, Kim JA, Kim DJ, Bae KH, Kim DM, Chung SJ, Yoo HS, Yu DY, Park KC, Yeom YI (2015) A lactate-induced response to hypoxia. Cell 161:595–609

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Hu W, Feng Z (2006) The p53 pathway: what questions remain to be explored? Cell Death Differ 13:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Li M, Kim WY (2011) Two sides to every story: the hif-dependent and hif-independent functions of pvhl. J Cell Mol Med 15:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lolkema MP, Mans DA, Snijckers CM, van Noort M, van Beest M, Voest EE, Giles RH (2007) The von Hippel-Lindau tumour suppressor interacts with microtubules through kinesin-2. FEBS Lett 581:4571–4576

    Article  CAS  PubMed  Google Scholar 

  • Lubensky IA, Gnarra JR, Bertheau P, Walther MM, Linehan WM, Zhuang ZP (1996) Allelic deletions of the vhl gene detected in multiple microscopic clear cell renal lesions in von Hippel-Lindau disease patients. Am J Pathol 149:2089–2094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lui DY, Colaiacovo MP (2013) Meiotic development in caenorhabditis elegans. Adv Exp Med Biol 757:133–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahrour N, Redwine WB, Florens L, Swanson SK, Martin-Brown S, Bradford WD, Staehling-Hampton K, Washburn MP, Conaway RC, Conaway JW (2008) Characterization of cullin-box sequences that direct recruitment of cul2-rbx1 and cul5-rbx2 modules to elongin bc-based ubiquitin ligases. J Biol Chem 283:8005–8013

    Article  CAS  PubMed  Google Scholar 

  • Maity SN, de Crombrugghe B (1998) Role of the ccaat-binding protein cbf/nf-y in transcription. Trends Biochem Sci 23:174–178

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Toker A (2017) Akt/pkb signaling: navigating the network. Cell 169:381–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McRonald FE, Morris MR, Gentle D, Winchester L, Baban D, Ragoussis J, Clarke NW, Brown MD, Kishida T, Yao M, Latif F, Maher ER (2009) Cpg methylation profiling in vhl related and vhl unrelated renal cell carcinoma. Mol Cancer 8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendoza M, Mandani G, Momand J (2014) The mdm2 gene family. Biomol Concepts 5:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  • Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grunwald V, Thompson JA, Figlin RA, Hollaender N, Kay A, Ravaud A, Grp R-S (2010) Phase 3 trial of everolimus for metastatic renal cell carcinoma final results and analysis of prognostic factors. Cancer-Am Cancer Soc 116:4256–4265

    CAS  Google Scholar 

  • Motzer RJ, McCann L, Deen K (2013) Pazopanib versus sunitinib in renal cancer reply. New Engl J Med 369

    Google Scholar 

  • Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu LA, Waxman IM, Sharma P, Investigators C (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. New Engl J Med 373:1803–1813

    Article  CAS  PubMed  Google Scholar 

  • Na X, Duan HO, Messing EM, Schoen SR, Ryan CK, di Sant’Agnese PA, Golemis EA, Wu G (2003) Identification of the rna polymerase ii subunit hsrpb7 as a novel target of the von Hippel-Lindau protein. EMBO J 22:4249–4259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HC, Yang H, Fribourgh JL, Wolfe LS, Xiong Y (2015) Insights into cullin-ring e3 ubiquitin ligase recruitment: structure of the vhl-elobc-cul2 complex. Structure 23:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordstrom-O’Brien M, van der Luijt RB, van Rooijen E, van den Ouweland AM, Majoor-Krakauer DF, Lolkema MP, van Brussel A, Voest EE, Giles RH (2010) Genetic analysis of von Hippel-Lindau disease. Hum Mutat 31:521–537

    PubMed  Google Scholar 

  • Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M (2004) The tumor-associated antigen prame is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 10:4307–4313

    Article  CAS  PubMed  Google Scholar 

  • Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, Gavin BJ, Kley N, Kaelin WG, Iliopoulos O (1998) The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1:959–968

    Article  CAS  PubMed  Google Scholar 

  • Okuda H, Saitoh K, Hirai S, Iwai K, Takaki Y, Baba M, Minato N, Ohno S, Shuin T (2001) The von hippel-lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase c. J Biol Chem 276:43611–43617

    Article  CAS  PubMed  Google Scholar 

  • Okumura F, Uematsu K, Byrne SD, Hirano M, Joo-Okumura A, Nishikimi A, Shuin T, Fukui Y, Nakatsukasa K, Kamura T (2016) Parallel regulation of von Hippel-Lindau disease by pvhl-mediated degradation of b-myb and hypoxia-inducible factor alpha. Mol Cell Biol 36:1803–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KC, Lee DC, Yeom YI (2015) Ndrg3-mediated lactate signaling in hypoxia. BMB Rep 48:301–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastore Y, Jedlickova K, Guan YL, Liu EL, Fahner J, Hasle H, Prchal JF, Prchal JT (2003) Mutations of von Hippel-Lindau tumor-suppressor gene and congenital polycythemia. Am J Hum Genet 73:412–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng QW, Dillehay LE, Madan A, Semenza GL, Bedi A (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1 alpha. Genes Dev 14:34–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter VE, Tickoo SK (2010) Differential diagnosis of renal tumours with clear cell histology. Pathology 42:374–383

    Article  PubMed  Google Scholar 

  • Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, Michaelson MD, Gorbunova VA, Gore ME, Rusakov IG, Negrier S, Ou YC, Castellano D, Lim HY, Uemura H, Tarazi J, Cella D, Chen C, Rosbrook B, Kim S, Motzer RJ (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (axis): a randomised phase 3 trial. Lancet 378:1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Robinson CM, Ohh M (2014) The multifaceted von Hippel-Lindau tumour suppressor protein. FEBS Lett 588:2704–2711

    Article  CAS  PubMed  Google Scholar 

  • Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD (2006) P53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell 22:395–405

    Article  CAS  PubMed  Google Scholar 

  • Sanchez DJ, Simon MC (2018) Transcriptional control of kidney cancer. Science 361:226–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura I, Lange C, Knevels E, Moskalyuk A, Pulizzi R, Eelen G, Chaze T, Tudor C, Boulegue C, Holt M, Daelemans D, Matondo M, Ghesquiere B, Giugliano M, Ruiz de Almodovar C, Dewerchin M, Carmeliet P (2016) The oxygen sensor phd2 controls dendritic spines and synapses via modification of filamin a. Cell Rep 14:2653–2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2003) Targeting hif-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  CAS  PubMed  Google Scholar 

  • Shi YQ, Liao SY, Zhuang XJ, Han CS (2011) Mouse fem1b interacts with and induces ubiquitin-mediated degradation of ankrd37. Gene 485:153–159

    Article  CAS  PubMed  Google Scholar 

  • Sjolund J, Johansson M, Manna S, Norin C, Pietras A, Beckman S, Nilsson E, Ljungberg B, Axelson H (2008) Suppression of renal cell carcinoma growth by inhibition of notch signaling in vitro and in vivo. J Clin Investig 118:217–228

    Article  PubMed  CAS  Google Scholar 

  • Starostina NG, Lim JM, Schvarzstein M, Wells L, Spence AM, Kipreos ET (2007) A cul-2 ubiquitin ligase containing three fem proteins degrades tra-1 to regulate c. Elegans sex determination. Dev Cell 13:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starostina NG, Simpliciano JM, McGuirk MA, Kipreos ET (2010) Crl2(lrr-1) targets a cdk inhibitor for cell cycle control in c. Elegans and actin-based motility regulation in human cells. Dev Cell 19:753–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolle C, Glenn G, Zbar B, Humphrey JS, Choyke P, Walther M, Pack S, Hurley K, Andrey C, Klausner R, Linehan WM (1998) Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum Mutat 12:417–423

    Article  CAS  PubMed  Google Scholar 

  • Tarade D, Ohh M (2018) The hif and other quandaries in vhl disease. Oncogene 37:139–147

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan S, Starostina NG, Kipreos ET (2007) The caenorhabditis elegans cell-cycle regulator zyg-11 defines a conserved family of cul-2 complex components. EMBO Rep 8:279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vriend J, Reiter RJ (2016) Melatonin and the von Hippel-Lindau/hif-1 oxygen sensing mechanism: a review. BBA-Rev Cancer 1865:176–183

    CAS  Google Scholar 

  • Wang Z, Liu P, Inuzuka H, Wei W (2014) Roles of f-box proteins in cancer. Nat Rev Cancer 14:233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Xia W, Qiu M, Wang X, Jiang F, Yin R, Xu L (2016) Atlas on substrate recognition subunits of crl2 e3 ligases. Oncotarget 7:46707–46716

    PubMed  PubMed Central  Google Scholar 

  • Xia XB, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL (2009) Integrative analysis of hif binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A 106:4260–4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Xiao KH, Whalen EJ, Forrester MT, Freeman RS, Fong GH, Gygi SP, Lefkowitz RJ, Stamler JS (2009) Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by egln3 and ubiquitylation by pvhl. Sci Signal 2

    Google Scholar 

  • Xu J, Li L, Yu G, Ying W, Gao Q, Zhang W, Li X, Ding C, Jiang Y, Wei D, Duan S, Lei Q, Li P, Shi T, Qian X, Qin J, Jia L (2015) The neddylation-cullin 2-rbx1 e3 ligase axis targets tumor suppressor rhob for degradation in liver cancer. Mol Cell Proteomics 14:499–509

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Minamishima YA, Yan Q, Schlisio S, Ebert BL, Zhang X, Zhang L, Kim WY, Olumi AF, Kaelin WG (2007) Pvhl acts as an adaptor to promote the inhibitory phosphorylation of the nf-kappa b agonist card9 by ck2. Mol Cell 28:15–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao XS, Tan J, Lim KJ, Koh J, Ooi WF, Li ZM, Huang DC, Xing MJ, Chan YS, Qu JZ, Tay ST, Wijaya G, Lam YN, Hong JH, Lee-Lim AP, Guan PY, Ng MSW, He CZ, Lin JS, Nandi T, Qamra A, Xu C, Myint SS, Davies JOJ, Goh JY, Loh G, Tan BC, Rozen SG, Yu Q, Tan IBH, Cheng CWS, Li S, Chang KTE, Tan PH, Silver DL, Lezhava A, Steger G, Hughes JR, Teh BT, Tan P (2017) Vhl deficiency drives enhancer activation of oncogenes in clear cell renal cell carcinoma. Cancer Discov 7:1284–1305

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Zheng L, Liu W, Zhang D, Li W, Yuan L (2017) Rootletin prevents cep68 from vhl-mediated proteasomal degradation to maintain centrosome cohesion. Biochim Biophys Acta Mol Cell Res 1864:645–654

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang Q (2018) Vhl and hypoxia signaling: beyond hif in cancer. Biomedicines 6

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Kwok-Shing Ng P, Kucherlapati M, Chen F, Liu Y, Tsang YH, de Velasco G, Jeong KJ, Akbani R, Hadjipanayis A, Pantazi A, Bristow CA, Lee E, Mahadeshwar HS, Tang J, Zhang J, Yang L, Seth S, Lee S, Ren X, Song X, Sun H, Seidman J, Luquette LJ, Xi R, Chin L, Protopopov A, Westbrook TF, Shelley CS, Choueiri TK, Ittmann M, Van Waes C, Weinstein JN, Liang H, Henske EP, Godwin AK, Park PJ, Kucherlapati R, Scott KL, Mills GB, Kwiatkowski DJ, Creighton CJ (2017) A pan-cancer proteogenomic atlas of pi3k/akt/mtor pathway alterations. Cancer Cell 31:820–832 e823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, Liu XD, Jonasch E, Xie L, Chen X, Yao X, Teh BT, Tan P, Zheng X, Li M, Lawrence C, Fan J, Geng J, Liu X, Hu L, Wang J, Liao C, Hong K, Zurlo G, Parker JS, Auman JT, Perou CM, Rathmell WK, Kim WY, Kirschner MW, Kaelin WG Jr, Baldwin AS, Zhang Q (2018) Vhl substrate transcription factor zhx2 as an oncogenic driver in clear cell renal cell carcinoma. Science 361:290–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zurlo G, Guo JP, Takada M, Wei WY, Zhang Q (2016) New insights into protein hydroxylation and its important role in human diseases. BBA-Rev Cancer 1866:208–220

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X., Zurlo, G., Zhang, Q. (2020). The Roles of Cullin-2 E3 Ubiquitin Ligase Complex in Cancer. In: Sun, Y., Wei, W., Jin, J. (eds) Cullin-RING Ligases and Protein Neddylation. Advances in Experimental Medicine and Biology, vol 1217. Springer, Singapore. https://doi.org/10.1007/978-981-15-1025-0_11

Download citation

Publish with us

Policies and ethics