Skip to main content

Automatically Designing Convolutional Neural Network Architecture with Artificial Flora Algorithm

  • Conference paper
  • First Online:
ICT Systems and Sustainability

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1077))

Abstract

Convolutional neural network has demonstrated high performance in many real-world problems in recent years. However, the results and accuracy of a CNN that are applied for a specific problem are highly controlled by the architecture and its hyperparameters. The process of finding the right set of hyperparameters for the network’s architecture is a very time-consuming process and requires expertise. To address this problem, we present a powerful method that does automatic hyperparameter search for designing CNN architecture. The hyperparameter optimization is performed by the artificial flora optimization algorithm. The proposed framework has the ability to explore different architectures and optimize the values of hyperparameters for a given task. In this research, the proposed framework is validated on MNIST image classification task and it can be concluded from the experimental results that the suggested search method accomplishes promising achievement in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013)

    Article  Google Scholar 

  2. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp. 91–99 (2015)

    Google Scholar 

  3. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  4. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105, Curran Associates, Inc., (2012)

    Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  7. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR, vol. abs/1608.06993 (2016)

    Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Dolicanin, E., Fetahovic, I., Tuba, E., Capor-Hrosik, R., Tuba, M.: Unmanned combat aerial vehicle path planning by brain storm optimization algorithm. Stud. Inform. Control 27(1), 15–24 (2018)

    Article  Google Scholar 

  13. Strumberger, I., Tuba, E., Bacanin, N., Beko, M., Tuba, M.: Wireless sensor network localization problem by hybridized moth search algorithm. In: 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC), pp. 316–321 (2018)

    Google Scholar 

  14. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, pp. 4:1–4:5, ACM (2015)

    Google Scholar 

  15. Bochinski, E., Senst, T., Sikora, T.: Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms. In: 2017 IEEE International Conference on Image Processing, pp. 3924–3928 (2017)

    Google Scholar 

  16. Cheng, L., Wu, X.-h., Wang, Y.: Artificial flora (AF) optimization algorithm. Appl. Sci. 8, 329:1–22 (2018)

    Google Scholar 

  17. Tuba, E., Tuba, M., Dolicanin, E.: Adjusted fireworks algorithm applied to retinal image registration. Stud. Inform. Control 26(1), 33–42 (2017)

    Article  Google Scholar 

  18. Tuba, E., Strumberger, I., Bacanin, N., Tuba, M.: Bare bones fireworks algorithm for capacitated p-median problem. In: LNCS: Advances in Swarm Intelligence, (Cham), pp. 283–291, Springer, Berlin (2018)

    Google Scholar 

  19. Alihodzic, A., Tuba, E., Simian, D., Tuba, V., Tuba, M.: Extreme learning machines for data classification tuning by improved bat algorithm. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE (2018)

    Google Scholar 

  20. Tuba, E., Strumberger, I., Zivkovic, D., Bacanin, N., Tuba, M.: Mobile robot path planning by improved brain storm optimization algorithm. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018)

    Google Scholar 

  21. Strumberger, I., Tuba, E., Bacanin, N., Beko, M., Tuba, M.: Modified monarch butterfly optimization algorithm for RFID network planning. In: 6th International Conference on Multimedia Computing and Systems (ICMCS), pp. 1–6 (2018)

    Google Scholar 

  22. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. AT&T Labs. http://yann.lecun.com/exdb/mnist, vol. 2, p. 18 (2010)

  23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, (USA), pp. 807–814. Omnipress (2010)

    Google Scholar 

  24. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  25. Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics 38, pp. 562–570 (2015)

    Google Scholar 

  26. Mcdonnell, M., Vladusich, T.: Enhanced image classification with a fast-learning shallow convolutional neural network. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2015)

    Google Scholar 

  27. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3367–3375 (2015)

    Google Scholar 

  28. Lee, C.-Y., Gallagher, P.W., Tu, Z.: Generalizing pooling functions in convolutional neural networks: mixed, gated, and tree. In: Artificial Intelligence and Statistics, pp. 464–472 (2015)

    Google Scholar 

Download references

Acknowledgements

Ministry of Education and Science of Republic of Serbia, Grant No. III-44006 supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Tuba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bezdan, T., Tuba, E., Strumberger, I., Bacanin, N., Tuba, M. (2020). Automatically Designing Convolutional Neural Network Architecture with Artificial Flora Algorithm. In: Tuba, M., Akashe, S., Joshi, A. (eds) ICT Systems and Sustainability. Advances in Intelligent Systems and Computing, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-15-0936-0_39

Download citation

Publish with us

Policies and ethics