Skip to main content

Nano-technology Applications in Pest Management

  • Chapter
  • First Online:
Innovative Pest Management Approaches for the 21st Century

Abstract

The application of nano-materials in crop protection remains unexplored. But, nano-pesticides have the potential to play a key role in the management of pests and pathogens. A nano-encapsulated pesticide formulation contains slow-releasing properties with increased stability, permeability, solubility and specificity. The development of eco-friendly nano-formulations with efficient delivery system and small quantities of nano-pesticides will be in great demand in the future. This will also facilitate production of massive quality products efficiently. Certain corporate sector companies are already marketing microencapsulated pesticides as nano-scale emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammar AS (2018) Nanotechnologies associated to floral resources in agri-food sector. Acta Agronóm 67(1):146–159

    Article  Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Rani PU, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91(1):1–15

    Google Scholar 

  • Balaji APB, Mishra P, Kumar RS, Ashu A, Margulis K, Magdassi S, Chandrasekaran N (2015) The environmentally benign form of pesticide in hydrodispersive nanometric form with improved efficacy against adult mosquitoes at low exposure concentrations. Bull Environ Contam Toxicol 95(6):734–739

    Article  CAS  PubMed  Google Scholar 

  • Balaji APB, Sastry TP, Manigandan S, Mukherjee A, Chandrasekaran N (2017) Environmental benignity of a pesticide in soft colloidal hydrodispersive nanometric form with improved toxic precision towards the target organisms than non-target organisms. Sci Total Environ 579:190–201

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M et al (2016) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against rose aphid, Macrosiphum rosae. J Nanosci 2016:4679410

    Article  CAS  Google Scholar 

  • Chandrashekharaiah M, Kandakoor SB, Gowda GB, Kammar V, Chakravarthy AK (2015) Nanomaterials: a review of their action and application in pest management and evaluation of DNA-tagged particles. In: New horizons in insect science: towards sustainable pest management. Springer, New Delhi, pp 113–126

    Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924

    Article  CAS  PubMed  Google Scholar 

  • El-Argawy E, Rahhal MMH, El-Korany A, Elshabrawy EM, Eltahan RM (2017) Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-Beheira Governorate. Asian J Plant Pathol 11:35–47

    Article  Google Scholar 

  • Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surf A Physicochem Eng Asp 372(1–3):66–72

    Article  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16(1):1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez JM, González C, Maestro A, Solè IMPC, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13(4):245–251

    Article  CAS  Google Scholar 

  • Huang B, Chen F, Shen Y, Qian K, Wang Y, Sun C, Cui H (2018) Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 8(2):102

    Article  CAS  PubMed Central  Google Scholar 

  • Kharissova OV, Kharisov BI, García TH, Méndez UO (2009) A review on less-common nanostructures. Synth React Inorg Met-Org Nano-Met Chem 39(10):662–684

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Lade BD, Gogle DP, Lade DB, Moon GM, Nandeshwar SB, Kumbhare SD (2019) Nanobiopesticide formulations: application strategies today and future perspectives. In: Nano-biopesticides today and future perspectives. Academic, pp 179–206

    Google Scholar 

  • Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7(1):E10

    Article  PubMed  PubMed Central  Google Scholar 

  • Logaranjan K, Raiza AJ, Gopinath SC, Chen Y, Pandian K (2016) Shape-and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity. Nanoscale Res Lett 11(1):520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulis-Goshen K, Magdassi S (2012) Organic nanoparticles from microemulsions: formation and applications. Curr Opin Colloid Interface Sci 17(5):290–296

    Article  CAS  Google Scholar 

  • Misra P, Shukla PK, Pramanik K, Gautam S, Kole C (2016) Nanotechnology for crop improvement. In: Plant nanotechnology. Springer, Cham, pp 219–256

    Chapter  Google Scholar 

  • Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113(1–3):151–170

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U, Roni M, Paulpandi M (2016) In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci 106:14–22

    Article  PubMed  Google Scholar 

  • Nadia ZD, Hany MH (2016) Role of nanotechnology in agriculture with special reference to pest control. Int J PharmTechnol Res 9(10):121–144

    Google Scholar 

  • Narayanan N, Gupta S, Gajbhiye VT, Manjaiah KM (2017) Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere 173:502–511

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483

    Article  CAS  PubMed  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127

    Article  CAS  Google Scholar 

  • Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci 11(13):1019–1031

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle AP, Paralikar P, Anasane N, Gade R, Ingle P (2018) Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Appl Microbiol Biotechnol 102(16):6827–6839

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar JC (2012) Novel approach for silver nanoparticle synthesis using Aspergillus terreus CZR-1: mechanism perspective. J Bionanosci 6(1):12–16

    Article  CAS  Google Scholar 

  • Rani S, Sushil (2018) Pest management by nanotechnology. Int J Curr Microbiol Appl Sci 7(3):3197–3208

    Article  CAS  Google Scholar 

  • Rodriguez E, Azevedo R, Fernandes P, Santos CA (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24(7):1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Insecticides design using advanced technologies. Springer, Berlin, pp 1–39

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh P, Kumari K, Vishvakarma VK, Aggarwal S, Chandra R, Yadav A (2018) Nanotechnology and its impact on insects in agriculture. In: Trends in insect molecular biology and biotechnology. Springer, Cham, pp 353–378

    Chapter  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    CAS  PubMed  Google Scholar 

  • Stadler T, Buteler M, Weaver DK, Sofie S (2012) Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 48:81–90

    Article  Google Scholar 

  • Strom R, Price D, Lubetkin S (2001) U.S. Patent Application No. 09/865,360

    Google Scholar 

  • Tarafdar JC, Raliya R (2012) Nanotechnology. Scientific Publishers, Jodhpur

    Google Scholar 

  • Tarafdar JC, Rathore I (2016) Microbial synthesis of nanoparticles for use in agriculture ecosystem. In: Bagyaraj DJ, Jamaluddin (eds) Microbes for plant stress management. New India Publishing Agency, Delhi, pp 105–118

    Google Scholar 

  • Thakur S, Thakur S, Kumar R (2018) Bio-nanotechnology and its role in agriculture and food industry. J Mol Genet Med 12(324):1747–0862

    Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C et al (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6(2):95–101

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Fahrenholtz CD, Hackett CL, Ding S, Day CS, Dhall R, Bierbach U (2017) Large-pore functionalized mesoporous silica nanoparticles as drug delivery vector for a highly cytotoxic hybrid platinum–acridine anticancer agent. Chem Eur J 23(14):3386–3397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors are thankful to the authorities of their institutions for encouragement and facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, A., Epidi, T.T., Kannan, M. (2020). Nano-technology Applications in Pest Management. In: Chakravarthy, A. (eds) Innovative Pest Management Approaches for the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-15-0794-6_19

Download citation

Publish with us

Policies and ethics