Skip to main content

Autophagy in Reproduction

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

Autophagy, a major degradation/recycling pathway, plays an essential role in cellular homeostasis maintenance, cell fate decision, and reproductive development. During reproduction, sperms and eggs, the specialized haploid gametes produced by the meiotic process of the germ cells in male and female respectively, are fused to form a new zygote that develops into fetus through embryogenesis and maternal–fetal crosstalk. Researches carried out in the past few years have proved that autophagy plays a key role in the regulation of reproduction process, and blockage of autophagy process likely contributes to reproductive abnormalities and even infertility. Here we summerize the recent progress in exploring the functional roles of autophagy in reproductive processes, such as spermatogenesis, folliculogenesis, fertilization, embryogenesis, and maternal–fetal crosstalk, in both animals and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MA:

3-methyladenine

Ambra1:

Activating molecule in beclin1-regulated autophagy

CTB:

Cytotrophoblast

Dcp1:

Drosophila caspase-1

enEVT:

Endovascular extravillous trophoblast

epg-2:

Ectopic PGL granules 2

epg-3:

Ectopic PGL granules 3

epg-4:

Ectopic PGL granules 4

epg-5:

Ectopic PGL granules 5

epg-8:

Ectopic PGL granules 8

ES:

Ectoplasmic specialization

EVT:

Extravillous trophoblast

FIP200:

200-kDa FAK-family interacting protein

FOXO/DAF-16:

Forkhead box O transcription factor

GATA1:

GATA binding protein-1

GOPC:

Golgi-associated PDZ-and coiled-coil motif-containing protein

HIF1α:

Hypoxia-inducible factor 1α

iEVT:

Interstitial extravillous trophoblast

IL-1β:

Interleukin‐1β

IUGR:

Intrauterine growth retardation

LAMP1:

Lysosome-associated membrane protein 1

LOX:

Lectin-like oxidized low-density lipoprotein

MOs:

Membranous organelles

mtDNA:

Mitochondria DNA

MYBL2/B-MYB:

MYB-related protein B

NHERF2:

Na+/H+ exchanger regulatory factor 2

oxLDL:

Oxidized low-density lipoprotein

PCD:

Programmed cell death

PDLIM1:

PDZ and LIM domain 1

PGL-1:

P granule components 1

PGL-3:

P granule components 3

PtdIns(3)P:

Phosphatidylinositol-3-phosphate

PTEN/DAF-18:

Phosphatase and tensin homolog

ROS:

Reactive oxygen species

SEPA-1:

Suppressor of ectopic P granules in autophagy mutants-1

Sirt1:

Silent information regulator 1

SR-BI:

Scavenger receptor class B type I

STB:

Syncytiotrophoblast

VDAC2:

Voltage-dependent anion channel 2

References

  • Agrawal V, Jaiswal MK, Mallers T et al (2015) Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor. Sci Rep 5:9410

    Article  CAS  Google Scholar 

  • Al Rawi S, Louvet-Vallee S, Djeddi A et al (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334:1144–1147

    Article  CAS  Google Scholar 

  • Ames K, Da Cunha DS, Gonzalez B et al (2017) A non-cell-autonomous role of BEC-1/BECN1/Beclin1 in coordinating cell-cycle progression and stem cell proliferation during germline development. Curr Biol 27:905–913

    Article  CAS  Google Scholar 

  • Cheng S, Wu Y, Lu Q et al (2013) Autophagy genes coordinate with the class II PI/PtdIns 3-kinase PIKI-1 to regulate apoptotic cell clearance in C. elegans. Autophagy 9:2022–2032

    Article  CAS  Google Scholar 

  • Gao FY, Li GP, Liu C et al (2018) Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J Cell Biol 217:2103–2119

    Article  CAS  Google Scholar 

  • Gawriluk TR, Hale AN, Flaws JA et al (2011) Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction 141:759–765

    Article  CAS  Google Scholar 

  • Gawriluk TR, Ko C, Hong X et al (2014) Beclin-1 deficiency in the murine ovary results in the reduction of progesterone production to promote preterm labor. Proc Natl Acad Sci USA 111:E4194–4203

    Article  CAS  Google Scholar 

  • Hou YC, Chittaranjan S, Barbosa SG et al (2008) Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 182:1127–1139

    Article  CAS  Google Scholar 

  • Hu L, Liang W, Yin C et al (2011) Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23:515–533

    Article  CAS  Google Scholar 

  • Lee JE, Oh HA, Song H et al (2011) Autophagy regulates embryonic survival during delayed implantation. Endocrinology 152:2067–2075

    Article  CAS  Google Scholar 

  • Liu C, Wang HN, Shang YL et al (2016) Autophagy is required for ectoplasmic specialization assembly in sertoli cells. Autophagy 12:814–832

    Article  CAS  Google Scholar 

  • Liu C, Song ZH, Wang LN et al (2017) Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice. Development 144:441–451

    Article  CAS  Google Scholar 

  • Matsuhara H, Yamamoto A (2016) Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Genes Cells 21:65–87

    Article  CAS  Google Scholar 

  • Nakashima A, Yamanaka-Tatematsu M, Fujita N et al (2013) Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy 9:303–316

    Article  CAS  Google Scholar 

  • Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334:1141–1144

    Article  CAS  Google Scholar 

  • Shang YL, Wang HN, Jia PF et al (2016) Autophagy regulates spermatid differentiation via degradation of PDLIM1. Autophagy 12:1575–1592

    Article  CAS  Google Scholar 

  • Song ZH, Yu HY, Wang P et al (2015) Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis 6:e1589

    Article  CAS  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  CAS  Google Scholar 

  • Tsukamoto S, Kuma A, Murakami M et al (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120

    Article  CAS  Google Scholar 

  • Wang H, Wan H, Li X et al (2014) Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res 24:852–869

    Article  CAS  Google Scholar 

  • Wen FP, Guo YS, Hu Y et al (2016) Distinct temporal requirements for autophagy and the proteasome in yeast meiosis. Autophagy 12:671–688

    Article  CAS  Google Scholar 

  • Yuan J, Zhang Y, Sheng Y et al (2015) MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals. Autophagy 11:1081–1098

    Article  CAS  Google Scholar 

  • Yue Z, Jin S, Yang C et al (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    Article  CAS  Google Scholar 

  • Zhang H, Baehrecke EH (2015) Eaten alive: novel insights into autophagy from multicellular model systems. Trends Cell Biology 25:376–387

    Article  Google Scholar 

  • Zhang GM, Wang Z, Du Z et al (2018) mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174:1492–1509

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, H., Khawar, M.B., Li, W. (2019). Autophagy in Reproduction. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_21

Download citation

Publish with us

Policies and ethics