Skip to main content

Agronomic Crop Responses and Tolerance to Polycyclic Aromatic Hydrocarbon Toxicity

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are made up of only carbon and hydrogen and composed of two or more fused benzene cycles. It includes a large and heterogeneous group of organic contaminants that are mainly formed and emitted because of the incomplete combustion of organic materials. Polycyclic aromatic hydrocarbons are toxic for all living organisms, and their mutagenic and carcinogenic effects are well known. Hence, their fate and transport in the environment are of worldwide attention. Over 90% of PAHs in the environment reside in surface soils; therefore, plants grown in PAH-contaminated soils can uptake them, and that can make problems in terms of agronomic crop yield and contamination of food chains. Polycyclic aromatic hydrocarbons can enter the plant via stomata as well as the root system and can lead to a range of disorders in plants. Decrease in photosynthesis and respiration, changes in enzyme activities and photosynthetic pigment content, and injury to membranes by lipid oxidation are some known effects of PAHs in plants. The increasing load of PAHs to the environment can be a crucial factor for the future diversity of plant species in the habitat, and it may determine the level of possible economic yields. Thus, it is important to exactly understand how PAHs influence the overall plant growth and development. This chapter revises some concepts about PAH importance in the environment, those effects on plants, and plant responses to PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC transporter:

ATP-dependent transporters

CAT:

catalase

GPX:

glutathione peroxidase

HMW:

high molecular weights

IARC:

International Agency for Research on Cancer

LMW:

low molecular weights

LPO:

lipid peroxidation

MDA:

molondialdehyde

PAHs:

polycyclic aromatic hydrocarbons

PSII:

photosystem II

QA:

quinone A

QB:

quinone B

ROS:

reactive oxygen species

SOD:

superoxide dismutase

US-EPA:

United States Environmental Protection Agency

References

  • Adam G, Duncan H (1999) Effect of diesel fuel on growth of selected plant species. Environ Geochem Health 21:353–357

    Article  CAS  Google Scholar 

  • Aina R, Palin L, Citterio S (2006) Molecular evidence for benzo[a]pyrene and naphthalene genotoxicity in Trifolium repens L. Chemosphere 65:666–673

    Article  CAS  PubMed  Google Scholar 

  • Alaei A, Vakili F, Mehrdad-Sharif AA (2010) Phytoremediation of soils contaminated by phenanthrene through Sorghum vulgar. J Environ Stud 53:79–88. [In Persian]

    Google Scholar 

  • Alkio M, Tabuchi TM, Wang X (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis includes growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56:2983–2994

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidant: relationships in green cells. Plant Physiol 100:224–233

    Article  CAS  Google Scholar 

  • Bakker MI, Vorenhout M, Sum D, Kollôffel CD (1999) Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three plantago species. Environ Toxicol Chem 18:2289–2294

    CAS  PubMed  Google Scholar 

  • Baud-Grasset F, Baud-Grasset S, Safferman SI (1993) Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere 26:1365–1374

    Article  CAS  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  CAS  PubMed  Google Scholar 

  • Brazier-Hicks M, Evans KM, Cunningham OD (2008) Catabolism of glutathione conjugates in Arabidopsis thaliana role in metabolic reactivation of the herbicide safener fenclorim. J Biol Chem 283:21102–21112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA, Willams M (1983) Relationship between lipophilicity and the distribution of non-ionized chemicals in barley shoot following uptake by the root. Pestic Sci 14:492–500

    Article  CAS  Google Scholar 

  • Canadian Soil Quality Guidelines for Carcinogenic and other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects) (2008) CCME (Canadian of Ministers of the Environment). Scientific Supporting Document PP: 218

    Google Scholar 

  • Cerniglia CE, Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbon (PAH) in the aquatic environment, 2nd edn. CRC Press, Boca Raton, pp 41–68

    Google Scholar 

  • Chang CF, Chang CY, Chen KH, Tsai WT, Shie JL, Chen YH (2004) Adsorption of naphthalene on zeolite from aqueous solution. J Colloid Interface Sci 277:29–34

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Fazlurrahman-Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbon: strategies for bioremediation. Indian J Microbiol 48:95–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheema SA, Khan MT, Tang X, Zhang C, Shen C, Malik Z, Chen Y (2008) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater 9:191–195

    Google Scholar 

  • Cheema SA, Khan MI, Shen C, Tang X, Farooq M, Chen L, Chen Y (2009) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 16:207–211

    Google Scholar 

  • Chen YC, Banks MK, Schwab AP (2003) Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum). Environ Sci Technol 37:5778–5782

    Article  CAS  PubMed  Google Scholar 

  • Chouychai W, Thongkukiatkul A, Upatham S, Lee H, Pokethitiyook P, Kruatrachue M (2009) Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. J Environ Biol 30:139–144

    CAS  PubMed  Google Scholar 

  • Chroma L, Mackova M, Kucerova P, Wiesche C, Burkhard J, Macek T (2002) Enzymes in plant metabolism of PCBs and PAHs. Acta Biotechnol 22:35–41

    Article  CAS  Google Scholar 

  • Collins CD (2011) Organic xenobiotics and plants. Springer Netherlands, Dordrecht, p 307

    Google Scholar 

  • Collins C, Fryer M, Grosso A (2006) Plant uptake of nonionic organic chemicals. Environ Sci Technol 40:45–52

    Article  CAS  PubMed  Google Scholar 

  • Du W, Sun Y, Cao L, Huang J, Ji R, Wang X, Wu J, Zhu J, Guo H (2011) Environmental fate of phenanthrene in lysimeter planted with wheat and rice in rotation. J Hazard Mater 188:408–413

    Article  CAS  PubMed  Google Scholar 

  • Dupuy J, Ouvard S, Legliz P, Sterckeman T (2015) Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by Phenanthrene. Chemosphere 124:110–115

    Article  CAS  PubMed  Google Scholar 

  • Duxbury CL, Dixon DG, Greenberg BM (1997) Effects of simulated solar radiation on the bioaccumulation OD polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environ Toxicol Chem 16:1739–1748

    Article  CAS  Google Scholar 

  • Dzantor E, Chekol T, Vough L (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J Environ Sci Health 9:1645–1661

    Article  Google Scholar 

  • Ebel M, Evangelou MWH, Schaeffer A (2007) Cyanide phytoremediation by water hyacinth (Eichhornia crassipes). Chemosphere 66:816–823

    Article  CAS  PubMed  Google Scholar 

  • Eewards NT (1983) Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment – a review. J Environ Qual 12:427–441

    Article  Google Scholar 

  • Epuri V, Sorensen D (1997) Benzo (a) pyrene and hexachlorobiphenyl contaminated soil: phytoremediation potential, 6th edn. American Chemical Society Press, Washington, DC, p 15

    Google Scholar 

  • Fetzer JC (2000) The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbon, 2nd edn. Wiley, New York, pp 27–29

    Google Scholar 

  • Fismes J, Perrin-Ganier C, Empereur-Bissonnet P, Morel JL (2002) Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J Environ Qual 31:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhu L (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Yu XZ, Wu SC, Cheung KC, Tam NFY, Qian PY, Wong MH (2006) Interaction of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil. Sci Total Environ 372(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Ghabbour EA, Davies G, Lam YY, Vozzella ME (2004) Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes; solm-laubach: Pontedericeae) in the Nile Delta, Egypt. Environ Pollut 131:445–451

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Alef A, Wilke B, Li P (2007) Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. J Hazard Mater 143:372–378

    Article  CAS  PubMed  Google Scholar 

  • Govindjee G (1995) Sixty-three years since Kautsky: chlorophyll fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Gregoris E, Argiriadis E, Vecchiato M, Zambon S, De Pieri S, Donateo A, Contini D, Piazza R, Barbante C, Gambaro A (2014) Gas-particle distributions, sources and health effects of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in Venice aerosols. Sci Total Environ 476:393–405

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Alcala G, Gotor C, Meyer AJ, Fricker M, Vega JM, Romero LC (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci USA 97:11108–11113

    Article  CAS  PubMed  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Harms HH (1996) Bioaccumulation and metabolic fate of sewage derived organic xenobiotics in plants. Sci Total Environ 185:83–92

    Article  CAS  Google Scholar 

  • Holoubek I, Korinek P, Seda Z, Schneiderova E, Holoubkova I, Pacl A, Triska J, Cudlín P, Caslavsky J (2000) The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ Pollut 109:283–292

    Article  CAS  PubMed  Google Scholar 

  • Huang XD, Zeiler LF, Dixon DG, Greenberg BM (1996) Photoinduced toxicity of PAHs to the foliar 193 regions of Brassica napus (canola) and Cucumis sativus (cucumber) in simulated solar radiation. Ecotoxicol Environ Saf 35:190–197

    Article  CAS  PubMed  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  CAS  PubMed  Google Scholar 

  • Hulster A, Miller JR, Marschner H (1994) Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28:1110–1115

    Article  Google Scholar 

  • Hung H, Mackay D (1997) A novel and simple model of the uptake of organic chemicals by vegetation from air and soil. Chemosphere 35:959–977

    Article  CAS  PubMed  Google Scholar 

  • Jajoo A, Mekala NR, Tomar RS, Grieco MG, Tikkanen M, Aro E (2014) Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance is not related to their aromaticity. J Photochem Photobiol B 137:151–155

    Article  CAS  PubMed  Google Scholar 

  • Jan F, Khan S, Ishaq M, Naeem M, Ahmad I, Hussain S (2014) Brick kiln exhaust as a source of polycyclic aromatic hydrocarbons (PAHs) in the surrounding soil and plants: a case study from the city of Peshawar, Pakistan. Arab J Geosci 7:13–19

    Article  CAS  Google Scholar 

  • Jian Y, Wang L, Peter PF, Yu HT (2004) Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat Res 557:99–108

    Article  CAS  Google Scholar 

  • Johnson AR, Wick LY, Harms H (2005) Principles of microbial PAH degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Kacalkova L, Tlustos P (2011) The uptake of persistent organic pollutants by plants. Cent Eur J Biol 6:223–235

    CAS  Google Scholar 

  • Kang F, Chen D, Gao Y, Zhang Y (2010) Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum L.). BMC Plant Biol 10:210–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kapustka LA (2004) Establishing Eco-SSLs for PAHs: lessons revealed from a review of literature on exposure and effects to terrestrial receptors. Hum Ecol Risk Assess 10(2):185–205

    Article  CAS  Google Scholar 

  • Khan S, Aijun L, Zhang S, Hu Q, Zhu Y (2008) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. J Hazard Mater 152:506–515

    Article  CAS  PubMed  Google Scholar 

  • Khatisashvili G, Gordeziani M, Kvesitadze G, Korte F (1997) Plant monooxygenases: participation in xenobiotic oxidation. Ecotoxicol Environ Saf 36:118–122

    Article  CAS  PubMed  Google Scholar 

  • Kmentova E (2003) In: Masaryk University (ed) Response of plant to fluoranthene in environment., Ph. D. thesis. Czech Republic, Brno, p 145

    Google Scholar 

  • Knejzlik Z, Kas J, Ruml T (2000) Mechanismus vstupu xenobiotik do organismu a jejich detoxikace. Chem List 94:913–918

    CAS  Google Scholar 

  • Korte F, Kvesitadze G, Ugrekhelidze D, Gordeaiani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F (2000) Organic toxicants and plants. Ecotoxicol Environ Saf 47:1–26

    Article  CAS  PubMed  Google Scholar 

  • Kraus JJ, Munir IZ, McEldoon JP, Clark DS, Dordick JS (1999) Oxidation of polycyclic aromatic hydrocarbons catalyzed by soybean peroxidase. Biotechnol Appl Biochem 80(3):221–230

    Article  CAS  Google Scholar 

  • Kummerova M, Slovak L, Holoubek I (1997) Growth response of spring barley to short- or long-period exposures to fluoranthene. Rost Vyroba 43:209–215

    CAS  Google Scholar 

  • Kummerova M, Bartak M, Triska J, Zubrova E, Zezulka S (2006) Inhibitory effect of fluoranthene on photosynthetic processes in lichens detected by chlorophyll fluorescence. Ecotoxicology 15:121–131

    Article  CAS  PubMed  Google Scholar 

  • Kummerova M, Zezulka S, Vanova L, Fiserova H (2012) Effect of organic pollutant treatment on the growth of pea and maize seedlings. Cent Eur J Biol 7(1):159–166

    CAS  Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (2006) Biochemical mechanisms of detoxification in higher plants. Springer, Berlin

    Google Scholar 

  • Larsson BK, Sahlberg GP, Eriksson AT, Busk LA (1983) Polycyclic aromatic hydrocarbons in grilled food. J Agric Food Chem 31:867–873

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Lee WS, Lee CH, Kim JG (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zeng X, Yang J, Khou K, Zan Q, Lei A, Tam NF (2014) Contamination of polycyclic aromatic hydrocarbons (PAHs) in surface sediments and plants mangrove swamps in Shenzhen, China. Mar Pollut Bull 85:590–596

    Article  CAS  PubMed  Google Scholar 

  • Lima AL, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic aromatic hydrocarbons in the environment. Environ Forensic 6:109–131

    Article  CAS  Google Scholar 

  • Lin CH, Huang X, Kolbanovskii A, Hingerty BE, Amin S, Broyde S (2001) Molecular topology of polycyclic aromatic carcinogens determines DNA adducts conformation: a link to tumorigenic activity. J Mol Biol 306:1059–1080

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Weisman D, Yuan-bei Y, Cui B, Huang Y, Colon-Carmona A, Wang Z (2008) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382

    Article  CAS  Google Scholar 

  • Mackay D, Shin WY, Ma KC (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Lewis Publisher, Michigan, p 597

    Google Scholar 

  • Maila MP, Cloete TE (2002) Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Int Biodeterior Biodegradation 50:107–113

    Article  CAS  Google Scholar 

  • Mandalakis M, Tsapakis M, Tsoga A, Stephanou EG (2002) Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos Environ 36:4023–4035

    Article  CAS  Google Scholar 

  • Marchal G, Smith KEC, Mayer P, De Jonge LW, Karlson UG (2014) Impact of soil amendments and the plant rhizosphere on PAH behavior in soil. Environ Pollut 188:124–131

    Article  CAS  PubMed  Google Scholar 

  • Mattina MI, White J, Eitzer B, Iannucci-Berger W (2002) Cycling of weathered chlordane residues in the environment: compositional and chiral profiles in contiguous soil, vegetation, and air compartments. Environ Toxicol Chem 21:281–288

    Article  CAS  PubMed  Google Scholar 

  • Mcglynn SE, Livingston RJ (1997) The distribution of polynuclear aromatic hydrocarbons between aquatic plants and sediments. Int J Quantum Chem 64:271–283

    Article  CAS  Google Scholar 

  • Meudec A, Dussauze J, Deslandes E, Poupart N (2006) Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum sediments. Chemosphere 65(3):474–481

    Article  CAS  PubMed  Google Scholar 

  • Moustafa YM, Shara SI (2009) Studies of seasonal variations on polynuclear aromatic hydrocarbons along the Nile River, Egypt. J Appl Sci Res 5:2349–2356

    CAS  Google Scholar 

  • Muratova A, Kapitonova VV, Chernyshova M, Turkovskaya P, Turkovskaya OV (2009) Enzymatic activity of alfalfa in a phenanthrene-contaminated environment. World Acad Sci Eng Technol 3:10–24

    Google Scholar 

  • Nesterenko MA, Kirzhner F, Zimmels Y, Armon R (2012) Eichhornia crassipes capability to remove naphthalene from waste water in the absence of bacteria. Chemosphere 87:1186–1191

    Article  CAS  Google Scholar 

  • Newman L, Reynolds C (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  PubMed  Google Scholar 

  • Nor YM (1994) Phenol removal by Eichhornia crassipes in the presence of trace metals. Water Res 28:1161–1166

    Article  CAS  Google Scholar 

  • Paiga P, Mendes L, Albergaria JT, Delerue-Matos CM (2012) Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography. Chem Pap 66:711–721

    Article  CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremediation 6:119–137

    Article  CAS  PubMed  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant labiality during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Pollut 137:187–197

    Article  CAS  PubMed  Google Scholar 

  • Parrish JW, White JC, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006) Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64:609–618

    Article  CAS  PubMed  Google Scholar 

  • Paskova V, Hilscherova K, Feldmannova M, Blaha L (2006) Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their n-heterocyclic derivatives. Environ Toxicol Chem 25:3238–3245

    Article  CAS  Google Scholar 

  • Piccardo MT, Pala M, Bonaccurso B, Stella A, Redaelli A, Paola G, Valerio F (2005) Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environ Pollut 133:293–301

    Article  CAS  PubMed  Google Scholar 

  • Platt MM, Mackie PR (1980) Distribution and fate of aliphatic and aromatic hydrocarbons in Antarctic fauna and environment. Nature 280:576–578

    Article  Google Scholar 

  • Pradham SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam 7:467–480

    Article  Google Scholar 

  • Reddy KR, Agami M, Tucker JC (1989) Influence of nitrogen supply rates on growth and nutrient storage by water hyacinth (Eichhornia crassipes) plants. Aquat Bot 36:33–43

    Article  CAS  Google Scholar 

  • Reynoso-Cuevas L, Gallegos-Martinez ME, Cruz-Sosa F, Gutierrez-Rojas M (2008) In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresour Technol 99:6379–6385

    Article  CAS  PubMed  Google Scholar 

  • Rosas I, Carbajal ME, Gómez AS, Belmont R, Villalobos PR (1984) Cytogenetic effects of cadmium accumulation on water hyacinth (Eichhornia crassipes). Environ Res 33:386–395

    Article  CAS  PubMed  Google Scholar 

  • Salehi-Lisar SY, Deljoo S (2015) Physiological effect of phenanthrene on Triticum aestivum L., Helianthus annuus and Medicago sativa. Eur J Biosci 9:29–37

    Article  CAS  Google Scholar 

  • Salehi-Lisar SY, Deljoo S, Harzandi AM (2015) Fluorene and phenanthrene uptake and accumulation by wheat, alfalfa and sunflower from the contaminated soil. Int J Phytoremediation 17:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonich SL, Hites RA (1994) Vegetation atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 28:939–943

    Article  CAS  PubMed  Google Scholar 

  • Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Technol 12:2905–2914

    Article  Google Scholar 

  • Smith MJ, Flowers TH, Duncan HJ, Alder J (2006) Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141(3):519–525

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Liu J, Jin L, Gao Y (2014) Utilizing pyrene-degrading endophytic bacteria to reduce the risk of plant pyrene contamination. Plant Soil 374(1–2):251–262

    Article  CAS  Google Scholar 

  • Sverdrup LE, Krogh PH, Nielsen T, Kjær C, Stenersen J (2003) Toxicity of eight polycyclic aromatic hydrocarbons to red clover (Trifolium pretense), ryegrass (Lolium perenne) and mustard (Sinapsis alba). Chemosphere 53:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Tang SY, Lu XW (1993) The use of Eichhornia crassipes to cleanse oil refinery waste water in China. Ecol Eng 2:243–251

    Article  Google Scholar 

  • Tao S, Jiao XC, Chen SH, Liu WX, Coveney RM, Zhu LZ, Luo YM (2006) Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa). Environ Pollut 140:406–415

    Article  CAS  PubMed  Google Scholar 

  • Tomar RS, Jajoo A (2013) A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). Ecotoxicology 22:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Tomar RP, Jajoo A (2014) Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum). Ecotoxicol Environ Saf 109:110–115

    Article  CAS  PubMed  Google Scholar 

  • Trapp S, MCFarlane JC (1995) Plant contamination, modeling and simulation of organic processes. Lewis, Tokyo, p 254

    Google Scholar 

  • Vanova L (2009) The use of in vitro cultures for effect assessment of persistent organic pollutants on plants. PhD thesis, Faculty of Science, Masaryk University, Czech Republic

    Google Scholar 

  • Wang YC, Qiao M, Liu YX, Arp HPH, Zhu YG (2011) Comparison of polycyclic aromatic hydrocarbon uptake pathways and risk assessment of vegetables from waste-water irrigated areas in northern China. J Environ Monit 13:433–439

    Article  CAS  PubMed  Google Scholar 

  • Ward OP, Singh A, Van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30:260–270

    Article  CAS  PubMed  Google Scholar 

  • Watts AW, Ballestero TP, Gardner KH (2006) Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62(8):1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Song S, Tian H, Liu T (2014) Effects of phenanthrene on seed germination and some physiological activities of wheat seedling. C R Biol 337:95–100

    Article  PubMed  Google Scholar 

  • Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–123

    Article  CAS  PubMed  Google Scholar 

  • White JC (2002) Differential bioavailability of field-weathered p, p′-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 49:143–152

    Article  CAS  PubMed  Google Scholar 

  • White PM, Wolf DC, Thoma GJ, Reynolds CM (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220

    Article  CAS  Google Scholar 

  • Wilcke W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil. J Plant Nutr Soil Sci 163:229–248

    Article  CAS  Google Scholar 

  • Wild E, Dent J, Thomas GO, Jones KC (2005) Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ Sci Technol 39:3695–3702

    Article  CAS  PubMed  Google Scholar 

  • Wild E, Dent J, Thomas GO, Jones KC (2006) Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: further studies utilizing two-photon excitation microscopy. Environ Sci Technol 40:907–916

    Article  PubMed  Google Scholar 

  • Wolverton BC, McDonald RC (1976) Don’t waste waterweeds. New Sci 71:318–320

    CAS  Google Scholar 

  • Xia H (2008) Enhanced disappearance of dicofol by water hyacinth in water. Environ Technol 29:297–302

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresour Technol 97:1050–1054

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhu L (2007) Performance of the partition-limited model on predicting ryegrass uptake of polycyclic aromatic hydrocarbons. Chemosphere 67:402–409

    Article  CAS  PubMed  Google Scholar 

  • Zhan XH, Liang X, Xu GH, Zhou LX (2013) Influence of plant root morphology and tissue composition on phenanthrene uptake: stepwise multiple linear regression analysis. Environ Pollut 179:294–300

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shukai F, Du X, Yang Y, Wang W, Hou H (2015) Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil-Brassica chinensis system. PLoS One 10:1–16

    Google Scholar 

  • Zuo Q, Lin H, Zhang X, Li Q, Liu S, Tao S (2006) A two-compartment exposure device for foliar uptake study. Environ Pollut 143:126–128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Yahya Salehi-Lisar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Houshani, M., Salehi-Lisar, S.Y. (2020). Agronomic Crop Responses and Tolerance to Polycyclic Aromatic Hydrocarbon Toxicity. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_15

Download citation

Publish with us

Policies and ethics