Skip to main content

Brain Iron Metabolism and Regulation

  • Chapter
  • First Online:
Brain Iron Metabolism and CNS Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1173))

Abstract

With the development of research, more and more evidences suggested that mutations in the genes associated with brain iron metabolism induced diseases in the brain. Brain iron metabolism disorders might be one cause of neurodegenerative diseases. This review mainly summarizes the normal process of iron entry into the brain across the blood–brain barrier, and the distribution and transportation of iron among neurons and glial cells, as well as the underlying regulation mechanisms. To understand the mechanisms of iron metabolism in the brain will provide theoretical basis to prevent and cure brain diseases related to iron metabolism disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  2. An L, Sato H, Konishi Y, Walker DG, Beach TG, Rogers J, Tooyama I (2009) Expression and localization of lactotransferrin messenger RNA in the cortex of Alzheimer’s disease. Neurosci Lett 452(3):277–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson GJ, Wang F (2012) Essential but toxic: controlling the flux of iron in the body. Clin Exp Pharmacol Physiol 39(8):719–724

    Article  CAS  PubMed  Google Scholar 

  4. Attieh ZK, Mukhopadhyay CK, Seshadri V, Tripoulas NA, Fox PL (1999) Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J Biol Chem 274(2):1116–1123

    Article  CAS  PubMed  Google Scholar 

  5. Bartzokis G (2002) Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 27(4):672–683

    Article  Google Scholar 

  6. Benarroch EE (2009) Brain iron homeostasis and neurodegenerative disease. Neurology 72(16):1436–1440

    Article  PubMed  Google Scholar 

  7. Bishop GM, Dang TN, Dringen R, Robinson SR (2011) Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia. Neurotox Res 19(3):443–451

    Article  CAS  PubMed  Google Scholar 

  8. Bradbury MW (1997) Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem 69(2):443–454

    Article  CAS  PubMed  Google Scholar 

  9. Burdo JR, Antonetti DA, Wolpert EB, Connor JR (2003) Mechanisms and regulation of transferrin and iron transport in a model blood-brain barrier system. Neuroscience 121(4):883–890

    Article  CAS  PubMed  Google Scholar 

  10. Burkhart A, Skjorringe T, Johnsen KB, Siupka P, Thomsen LB, Nielsen MS, Thomsen LL, Moos T (2016) Expression of iron-related proteins at the neurovascular unit supports reduction and reoxidation of iron for transport through the blood-brain barrier. Mol Neurobiol 53(10):7237–7253

    Article  CAS  PubMed  Google Scholar 

  11. Chen JH, Shahnavas S, Singh N, Ong WY, Walczyk T (2013) Stable iron isotope tracing reveals significant brain iron uptake in adult rats. Metallomics Integr Biometal Sci 5(2):167–173

    Article  CAS  Google Scholar 

  12. Cooperman SS, Meyron-Holtz EG, Olivierre-Wilson H, Ghosh MC, McConnell JP, Rouault TA (2005) Microcytic anemia, erythropoietic protoporphyria, and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2. Blood 106(3):1084–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J (2007) Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26(12):2823–2831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, Ganz T, Musci G, Kaplan J (2007) The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 18(7):2569–2578

    Article  PubMed  PubMed Central  Google Scholar 

  15. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403(6771):776–781

    Article  CAS  PubMed  Google Scholar 

  16. Drakesmith H, Nemeth E, Ganz T (2015) Ironing out ferroportin. Cell Metab 22(5):777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA (1986) MRI of brain iron. AJR Am J Roentgenol 147(1):103–110

    Article  CAS  PubMed  Google Scholar 

  18. Du F, Qian C, Qian ZM, Wu XM, Xie H, Yung WH, Ke Y (2011) Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase a pathway. Glia 59(6):936–945

    Article  PubMed  Google Scholar 

  19. Du F, Qian ZM, Luo Q, Yung WH, Ke Y (2015) Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol Neurobiol 52(1):101–114

    Article  CAS  PubMed  Google Scholar 

  20. Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662

    Article  CAS  PubMed  Google Scholar 

  21. Faucheux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, Pierce A, Leveugle B, Kubis N, Hauw JJ, Agid Y et al (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci USA 92(21):9603–9607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fillebeen C, Dehouck B, Benaissa M, Dhennin-Duthille I, Cecchelli R, Pierce A (1999) Tumor necrosis factor-alpha increases lactoferrin transcytosis through the blood-brain barrier. J Neurochem 73(6):2491–2500

    Article  CAS  PubMed  Google Scholar 

  23. Fillebeen C, Ruchoux MM, Mitchell V, Vincent S, Benaissa M, Pierce A (2001) Lactoferrin is synthesized by activated microglia in the human substantia nigra and its synthesis by the human microglial CHME cell line is upregulated by tumor necrosis factor alpha or 1-methyl-4-phenylpyridinium treatment. Brain Res Mol Brain Res 96(1–2):103–113

    Article  CAS  PubMed  Google Scholar 

  24. Fisher J, Devraj K, Ingram J, Slagle-Webb B, Madhankumar AB, Liu X, Klinger M, Simpson IA, Connor JR (2007) Ferritin: a novel mechanism for delivery of iron to the brain and other organs. Am J Physiol Cell Physiol 293(2):C641–C649

    Article  CAS  PubMed  Google Scholar 

  25. Galy B, Ferring D, Benesova M, Benes V, Hentze MW (2004) Targeted mutagenesis of the murine IRP1 and IRP2 genes reveals context-dependent RNA processing differences in vivo. RNA (New York, NY) 10(7):1019–1025

    Article  CAS  Google Scholar 

  26. Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochimica et biophysica acta 1823(9):1434–1443

    Article  CAS  Google Scholar 

  27. Gao G, You L-H, Chang Y-Z (2017) Iron metabolism in Parkinson’s disease. In: Oxidative stress and redox signalling in Parkinson’s disease. The Royal Society of Chemistry, pp 255–276 (Chapter 9)

    Google Scholar 

  28. Ghosh MC, Zhang DL, Rouault TA (2015) Iron misregulation and neurodegenerative disease in mouse models that lack iron regulatory proteins. Neurobiol Dis 81:66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  CAS  PubMed  Google Scholar 

  30. Han J, Day JR, Connor JR, Beard JL (2003) Gene expression of transferrin and transferrin receptor in brains of control vs. iron-deficient rats. Nutr Neurosci 6(1):1–10

    Google Scholar 

  31. Healy S, McMahon J, Owens P, FitzGerald U (2016) Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model. Sci Rep 6:36410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Healy S, McMahon JM, FitzGerald U (2017) Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations. Prog Neurobiol 158:1–14

    Article  CAS  PubMed  Google Scholar 

  33. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285–297

    Article  CAS  PubMed  Google Scholar 

  34. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of Mammalian iron metabolism. Cell 142(1):24–38

    Article  CAS  PubMed  Google Scholar 

  35. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278(29):27144–27148

    Article  CAS  PubMed  Google Scholar 

  36. Kautz L, Jung G, Du X, Gabayan V, Chapman J, Nasoff M, Nemeth E, Ganz T (2015) Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of beta-thalassemia. Blood 126(17):2031–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T (2014) Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet 46(7):678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ke Y, Qian ZM (2003) Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol 2(4):246–253

    Article  CAS  PubMed  Google Scholar 

  39. Ke Y, Qian ZM (2007) Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 83(3):149–173

    Article  CAS  PubMed  Google Scholar 

  40. Kim HY, LaVaute T, Iwai K, Klausner RD, Rouault TA (1996) Identification of a conserved and functional iron-responsive element in the 5′-untranslated region of mammalian mitochondrial aconitase. J Biol Chem 271(39):24226–24230

    Article  CAS  PubMed  Google Scholar 

  41. Klomp LW, Farhangrazi ZS, Dugan LL, Gitlin JD (1996) Ceruloplasmin gene expression in the murine central nervous system. J Clin Investig 98(1):207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klomp LW, Gitlin JD (1996) Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Hum Mol Genet 5(12):1989–1996

    Article  CAS  PubMed  Google Scholar 

  43. Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480(2–3):147–150

    Article  CAS  PubMed  Google Scholar 

  44. Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev 50(2):258–265

    Article  CAS  PubMed  Google Scholar 

  45. Lane DJ, Robinson SR, Czerwinska H, Bishop GM, Lawen A (2010) Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochem J 432(1):123–132

    Article  CAS  PubMed  Google Scholar 

  46. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R 3rd, Grinberg A, Love P, Tresser N, Rouault TA (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27(2):209–214

    Article  CAS  PubMed  Google Scholar 

  47. Li H, Sun H, Qian ZM (2002) The role of the transferrin-transferrin-receptor system in drug delivery and targeting. Trends Pharmacol Sci 23(5):206–209

    Article  CAS  PubMed  Google Scholar 

  48. Ma J, Zhang FL, Zhou G, Bao YX, Shen Y, Qian ZM (2018) Different characteristics of hepcidin expression in IL-6+/+ and IL-6-/- neurons and astrocytes treated with lipopolysaccharides. Neurochem Res 43(8):1624–1630

    Article  CAS  PubMed  Google Scholar 

  49. Malecki EA, Devenyi AG, Beard JL, Connor JR (1999) Existing and emerging mechanisms for transport of iron and manganese to the brain. J Neurosci Res 56(2):113–122

    CAS  PubMed  Google Scholar 

  50. McCarthy RC, Kosman DJ (2013) Ferroportin and exocytoplasmic ferroxidase activity are required for brain microvascular endothelial cell iron efflux. J Biol Chem 288(24):17932–17940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McCarthy RC, Kosman DJ (2014) Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS ONE 9(2):e89003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. McCarthy RC, Kosman DJ (2015) Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier. Front Mol Neurosci 8:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science (New York, NY) 291(5509):1755–1759

    Article  CAS  Google Scholar 

  54. Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre-Wilson H, Grinberg A, Love P, Rouault TA (2004) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23(2):386–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moos T (2002) Brain iron homeostasis. Dan Med Bull 49(4):279–301

    CAS  PubMed  Google Scholar 

  56. Moos T, Morgan EH (2000) Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 20(1):77–95

    Article  CAS  PubMed  Google Scholar 

  57. Moos T, Rosengren Nielsen T, Skjorringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103(5):1730–1740

    Article  CAS  PubMed  Google Scholar 

  58. Moos T, Trinder D, Morgan EH (2000) Cellular distribution of ferric iron, ferritin, transferrin and divalent metal transporter 1 (DMT1) in substantia nigra and basal ganglia of normal and beta2-microglobulin deficient mouse brain. Cell Mol Biol (Noisy-le-Grand, France) 46(3):549–561

    Google Scholar 

  59. Moroo I, Ujiie M, Walker BL, Tiong JW, Vitalis TZ, Karkan D, Gabathuler R, Moise AR, Jefferies WA (2003) Identification of a novel route of iron transcytosis across the mammalian blood-brain barrier. Microcirculation (New York, NY: 1994) 10(6):457–462

    CAS  PubMed  Google Scholar 

  60. Morris CM, Candy JM, Oakley AE, Bloxham CA, Edwardson JA (1992) Histochemical distribution of non-haem iron in the human brain. Acta Anat 144(3):235–257

    Article  CAS  PubMed  Google Scholar 

  61. Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213

    Article  CAS  PubMed  Google Scholar 

  62. Nemeth E, Ganz T (2006) Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26:323–342

    Article  CAS  PubMed  Google Scholar 

  63. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science (New York, NY) 306(5704):2090–2093

    Article  CAS  Google Scholar 

  64. Oshiro S, Kawahara M, Kuroda Y, Zhang C, Cai Y, Kitajima S, Shirao M (2000) Glial cells contribute more to iron and aluminum accumulation but are more resistant to oxidative stress than neuronal cells. Biochim Biophys Acta 1502(3):405–414

    Article  CAS  PubMed  Google Scholar 

  65. Oshiro S, Morioka MS, Kikuchi M (2011) Dysregulation of iron metabolism in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Adv Pharmacol Sci 2011:378278

    PubMed  PubMed Central  Google Scholar 

  66. Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    Article  CAS  PubMed  Google Scholar 

  67. Patel BN, David S (1997) A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J Biol Chem 272(32):20185–20190

    Article  CAS  PubMed  Google Scholar 

  68. Patel BN, Dunn RJ, David S (2000) Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J Biol Chem 275(6):4305–4310

    Article  CAS  PubMed  Google Scholar 

  69. Pelizzoni I, Zacchetti D, Campanella A, Grohovaz F, Codazzi F (2013) Iron uptake in quiescent and inflammation-activated astrocytes: a potentially neuroprotective control of iron burden. Biochim Biophys Acta 1832(8):1326–1333

    Article  CAS  Google Scholar 

  70. Peters DG, Connor JR, Meadowcroft MD (2015) The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin. Neurobiol Dis 81:49–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qian ZM, Chang YZ, Leung G, Du JR, Zhu L, Wang Q, Niu L, Xu YJ, Yang L, Ho KP, Ke Y (2007) Expression of ferroportin1, hephaestin and ceruloplasmin in rat heart. Biochem Biophys Acta 1772(5):527–532

    CAS  PubMed  Google Scholar 

  72. Qian ZM, He X, Liang T, Wu KC, Yan YC, Lu LN, Yang G, Luo QQ, Yung WH, Ke Y (2014) Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol 50(3):811–820

    Article  CAS  PubMed  Google Scholar 

  73. Qian ZM, Pu YM, Wang Q, Ke Y, Yao YD, Chen WF, Shen X, Feng YM, Tang PL (1999) Cerebellar granule cells acquire transferrin-free iron by a carrier-mediated process. Neuroscience 92(2):577–582

    Article  CAS  PubMed  Google Scholar 

  74. Qian ZM, Tang PL, Wang Q (1997) Iron crosses the endosomal membrane by a carrier-mediated process. Prog Biophys Mol Biol 67(1):1–15

    Article  CAS  PubMed  Google Scholar 

  75. Ramey G, Deschemin JC, Durel B, Canonne-Hergaux F, Nicolas G, Vaulont S (2010) Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 95(3):501–504

    Article  CAS  PubMed  Google Scholar 

  76. Rasmussen MK, Mestre H, Nedergaard M (2018) The glymphatic pathway in neurological disorders. Lancet Neurol 17(11):1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14(8):551–564

    Article  CAS  PubMed  Google Scholar 

  78. Rouault TA, Zhang DL, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24(4):673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ryan F, Zarruk JG, Losslein L, David S (2018) Ceruloplasmin plays a neuroprotective role in cerebral ischemia. Frontiers in neuroscience 12:988

    Article  PubMed  Google Scholar 

  80. Siddappa AJ, Rao RB, Wobken JD, Leibold EA, Connor JR, Georgieff MK (2002) Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. J Neurosci Res 68(6):761–775

    Article  CAS  PubMed  Google Scholar 

  81. Skjorringe T, Moller LB, Moos T (2012) Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front Pharmacol 3:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Smith SR, Ghosh MC, Ollivierre-Wilson H, Hang Tong W, Rouault TA (2006) Complete loss of iron regulatory proteins 1 and 2 prevents viability of murine zygotes beyond the blastocyst stage of embryonic development. Blood Cells Mol Dis 36(2):283–287

    Article  CAS  PubMed  Google Scholar 

  83. Song N, Wang J, Jiang H, Xie J (2018) Astroglial and microglial contributions to iron metabolism disturbance in Parkinson’s disease. Biochimica et biophysica acta 1864(3):967–973

    Article  CAS  Google Scholar 

  84. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, Gonzalez-Billault C, Nunez MT (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126(4):541–549

    Article  CAS  PubMed  Google Scholar 

  85. Vargas JD, Herpers B, McKie AT, Gledhill S, McDonnell J, van den Heuvel M, Davies KE, Ponting CP (2003) Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochem Biophys Acta 1651(1–2):116–123

    CAS  PubMed  Google Scholar 

  86. Wang J, Jiang H, Xie JX (2007) Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Eur J Neurosci 25(9):2766–2772

    Article  PubMed  Google Scholar 

  87. Wang L, Liu X, You LH, Ci YZ, Chang S, Yu P, Gao G, Chang YZ (2019) Hepcidin and iron regulatory proteins coordinately regulate ferroportin 1 expression in the brain of mice. J Cell Physiol 234(5):7600–7607

    Article  CAS  PubMed  Google Scholar 

  88. Wang SM, Fu LJ, Duan XL, Crooks DR, Yu P, Qian ZM, Di XJ, Li J, Rouault TA, Chang YZ (2010) Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci CMLS 67(1):123–133

    Article  CAS  PubMed  Google Scholar 

  89. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier. Brain Res 1001(1–2):108–117

    Article  CAS  PubMed  Google Scholar 

  91. Xu H, Wang Y, Song N, Wang J, Jiang H, Xie J (2017) New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson’s disease. Frontiers in molecular neuroscience 10:455

    Article  PubMed  CAS  Google Scholar 

  92. Yang WM, Jung KJ, Lee MO, Lee YS, Lee YH, Nakagawa S, Niwa M, Cho SS, Kim DW (2011) Transient expression of iron transport proteins in the capillary of the developing rat brain. Cell Mol Neurobiol 31(1):93–99

    Article  CAS  PubMed  Google Scholar 

  93. Yu P, Qian ZM, Duan XL, Chang YZ (2004) The structure, gene expression of Divalent Metal Transporter 1 and the underlying regulatory mechanisms. Chin J Neuroanat 20:205–209

    CAS  Google Scholar 

  94. Zanardi A, Conti A, Cremonesi M, D’Adamo P, Gilberti E, Apostoli P, Cannistraci CV, Piperno A, David S, Alessio M (2018) Ceruloplasmin replacement therapy ameliorates neurological symptoms in a preclinical model of aceruloplasminemia. EMBO Mol Med 10(1):91–106

    Article  CAS  PubMed  Google Scholar 

  95. Zechel S, Huber-Wittmer K, von Bohlen und Halbach O (2006) Distribution of the iron-regulating protein hepcidin in the murine central nervous system. J Neurosci Res 84(4):790–800

    Article  CAS  PubMed  Google Scholar 

  96. Zhang P, Land W, Lee S, Juliani J, Lefman J, Smith SR, Germain D, Kessel M, Leapman R, Rouault TA, Subramaniam S (2005) Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism. J Struct Biol 150(2):144–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zheng W, Monnot AD (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 133(2):177–188

    Article  CAS  PubMed  Google Scholar 

  98. Zumbrennen-Bullough KB, Becker L, Garrett L, Holter SM, Calzada-Wack J, Mossbrugger I, Quintanilla-Fend L, Racz I, Rathkolb B, Klopstock T, Wurst W, Zimmer A, Wolf E, Fuchs H, Gailus-Durner V, de Angelis MH, Romney SJ, Leibold EA (2014) Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments. PLoS ONE 9(6):e98072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (31520103908, 31970905), Hebei Provincial Natural Science Foundation (C2017205140), Hebei Provincial Education Department Foundation of China (ZD2015105), Hebei Provincial Fund for studying abroad and returning to China (C201862), and Hebei normal University Outstanding Youth Fund (L2018J05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Yu or Yan-Zhong Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, P., Chang, YZ. (2019). Brain Iron Metabolism and Regulation. In: Chang, YZ. (eds) Brain Iron Metabolism and CNS Diseases. Advances in Experimental Medicine and Biology, vol 1173. Springer, Singapore. https://doi.org/10.1007/978-981-13-9589-5_3

Download citation

Publish with us

Policies and ethics