Skip to main content

Phyllosphere and Its Potential Role in Sustainable Agriculture

  • Chapter
  • First Online:
Microbial Genomics in Sustainable Agroecosystems

Abstract

The Phyllosphere – the microbial composition of the aerial part of the plant – has coevolved with its plant host to populate one of the highly dominated places microbes are able to colonize. In contrast to root associated microbes which are engulfed by a buffering soil, the phyllosphere microbial community is highly affected by environmental factors such as climate variation. Considering the high diversity and abundance of foliar community consisting bacteria, fungi, protozoa and nematodes, the phyllosphere is subjected to complex ecological interactions (e.g., antibiosis, competition for resources, and symbiosis) among its members and the plant host. Similar to observation in human gut microbiome, these interactions are likely to affect plant interaction with pathogens, as partially demonstrated in studies of biocontrol agents. Thus, “Plants wear their guts on the outside” as previously suggested by Janzen DH (1985) The natural history of mutualisms. In: The biology of mutualism: ecology and evolution. Croom/Helm, London/Sydney, pp 40–99. In spite of the importance of this community, there are limited studies that deploy functional omics approaches to study the phyllosphere, and specifically the microbial biotic community associated with pathogenic organism - the Pathobiome. Thus, future studies should include functional analysis of the phyllosphere, role of its community members as biofertilizers and growth stimulators, the effect of nutrients (e. g., K, N, P, Fe) composition on its microbial population profile, and phyllosphere-host interactions. Empowered by “next generation sequencing”, findings from these studies should enable to support agrotechnical practice and breeding programs that will improve crops production, quality, and resistance to biotic and abiotic stress.

This chapter covers most important facets of knowledge accumulated from phyllosphere research: Environmental conditions affecting the establishment and composition of the phyllosphere. Advanced methodologies used for detection and study of the phyllosphere, following summary of its taxonomic composition. The role of the phyllosphere in plant fitness and health, including study of the pathobiome. And finally, the potential use of phyllosphere monitoring and manipulation in sustainable agriculture practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57(15):4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. Plos Biolo 14

    Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF, Spudich JL, Von Mering C, Vorholt JA, Iluz D, Beja O, Belkin S (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14:140–146

    Article  CAS  PubMed  Google Scholar 

  • Aydogan EL, Moser G, Muller C, Kampfer P, Glaeser SP (2018) Long-term warming shifts the composition of bacterial communities in the phyllosphere of galium album in a permanent grassland field-experiment. Front Microbiol 9:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, Piepenbring M, Schmitt (2013) Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS One 8:e53987

    Google Scholar 

  • Bartoli C, Frachon L, Barret M, Rigal M, Huard-Chauveau C, Mayjonade B, Zanchetta C, Bouchez O, Roby D, Carrere S, Roux F (2018) In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana. ISME J 12:2024–2038

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Diab S, Okon Y (1982) Survival of Xanthomonas campestris pv. vesicatoria in pepper seeds and roots in symptomless and dry leaves in non-host plants and in the soil. Plant Soil 68:161–170

    Article  Google Scholar 

  • Beattie GA (2011) Water relations in the interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol 49:533–555

    Article  CAS  PubMed  Google Scholar 

  • Blakeman JP (1972) Effect of plant age on inhibition of Botrytis cinerea spores by bacteria on beetroot leaves. Physiol Plant Pathol 2:143–152

    Article  Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8(2):e56329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10:e1004283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogino PC, Oliva MDLM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14(8):15838–15859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun-Kiewnick A, Jacobsen BJ, Sands DC (2000) Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology 90:368–375

    Article  CAS  PubMed  Google Scholar 

  • Bringel F, Couee I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JK, Hovmoller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt J, Hunsche M (2013) “Breath figures” on leaf surfaces-formation and effects of microscopic leaf wetness. Front Plant Sci 4:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Campisano A, Albanese D, Yousaf S, Pancher M, Donati C, Pertot I (2017) Temperature drives the assembly of endophytic communities' seasonal succession. Environ Microbiol 19(8):3353–3364

    Article  PubMed  Google Scholar 

  • Carvalho SD, Castillo JA (2018) Influence of light on plant-phyllosphere interaction. Front Plant Sci 9:1482

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalivendra S, Derobertis C, Reyes Pineda J, Ham JH, Damann K (2018) Rice phyllosphere bacillus species and their secreted metabolites suppress Aspergillus flavus growth and aflatoxin production in vitro and in maize seeds. Toxins (Basel) 10:1–16

    Article  CAS  Google Scholar 

  • Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z (2018) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9:3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214

    CAS  PubMed  Google Scholar 

  • Correa OS, Romero AM, Montecchia MS, Soria MA (2007) Tomato genotype and Azospirillum inoculation modulate the changes in bacterial communities associated with roots and leaves. J Appl Microbiol 102:781–786

    Article  CAS  PubMed  Google Scholar 

  • Crombie AT, Larke-Mejia NL, Emery H, Dawson R, Pratscher J, Murphy GP, McGenity TJ, Murrell JC (2018) Poplar phyllosphere harbors disparate isoprene-degrading bacteria. Proc Natl Acad Sci U S A 115(51):13081–13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  • Davis CL, Brlansky RH (1991) Use of immune gold labelling with scanning electron microscopy to identify phytopathogenic bacteria on leaf surfaces. Appl Environ Microbiol 7(10):3052–3055

    Google Scholar 

  • de Oliveira CL, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43(4):1562

    Article  Google Scholar 

  • Dechesne A, Wang G, Gulez G, Or D, Smets BF (2010) Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci U S A 107:14369–14372

    Article  PubMed  PubMed Central  Google Scholar 

  • Dees MW, Lysoe E, Nordskog B, Brurberg MB (2015) Bacterial communities associated with surfaces of leafy greens: shift in composition and decrease in richness over time. Appl Environ Microb 81:1530–1539

    Article  CAS  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    Article  PubMed  PubMed Central  Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19:709–714

    Article  Google Scholar 

  • Enya J, Shinohara H, Yoshida S, Tsukiboshi T, Negishi H, Suyama K, Tsushima S (2007) Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb Ecol 53:524–536

    Article  CAS  PubMed  Google Scholar 

  • Ercolani GL (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microbial Ecol 21:35–48

    Article  CAS  Google Scholar 

  • Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124(1):62–66

    Article  CAS  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: Plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Farre-Armengol G, Filella I, Llusia J, Penuelas J (2016) Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci 21:854–860

    Article  CAS  PubMed  Google Scholar 

  • Favilli F, Messini A (1990) Nitrogen fixation at phyllospheric level in coniferous plants in Italy. Plant Soil 128:91–95

    Article  CAS  Google Scholar 

  • Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S (2011) Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol 77:7647–7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel OM, Delmont TO, Post AF, Belkin S (2016) Metagenomic signatures of bacterial adaptation to life in the phyllosphere of a salt-secreting desert tree. Appl Environ Microb 82:2854

    Article  CAS  Google Scholar 

  • Finkel OM, Castrillo G, Herrera Paredes S, Salas Gonzalez I, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 117(1–2):9–18

    Article  PubMed  Google Scholar 

  • Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol 120:433–448

    Article  CAS  PubMed  Google Scholar 

  • Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570

    Article  CAS  PubMed  Google Scholar 

  • Gaggia F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141(Suppl 1):S15–S28

    Article  PubMed  Google Scholar 

  • Glenn DM, Bassett C, Dowd SE (2015) Effect of pest management system on 'Empire' apple leaf phyllosphere populations. Sci Hortic 183:58–65

    Article  Google Scholar 

  • Gopal M, Gupta A (2016) Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol 7:1971

    Article  PubMed  PubMed Central  Google Scholar 

  • Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 103:13186–13191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross S, Kunz L, Muller DC, Santos Kron A, Freimoser FM (2018) Characterization of antagonistic yeasts for biocontrol applications on apples or in soil by quantitative analyses of synthetic yeast communities. Yeast 35:559–566

    Article  CAS  PubMed  Google Scholar 

  • Hassani MA, Duran P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, Vetter MM, Vilhjálmsson BJ, Nordborg M, Gordon JI, Bergelson J (2014) Genome-wide association study of Arabidopsis thaliana’s leaf microbial community. Nat Commun 5:5320

    Article  PubMed  Google Scholar 

  • Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyper accumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644

    Article  CAS  PubMed  Google Scholar 

  • Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Environ Res Public Health 15:574

    Article  CAS  PubMed Central  Google Scholar 

  • Ilsan NA, Nawangsih A, Wahyudi A (2016) Rice phyllosphere actinomycetes as biocontrol agent of bacterial leaf blight disease on rice. Asian J Plant Pathol 10:1–8

    Article  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2013) Climate change 2013 the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Izuno A, Kanzaki M, Artchawakom T, Wachrinrat C, Isagi Y (2016) Vertical structure of phyllosphere fungal communities in a tropical forest in thailand uncovered by high-throughput sequencing. PLoS One 11:e0166669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CR, Randolph KC, Osborn SL, Tyler HL (2013) Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol 13:274

    Article  PubMed  PubMed Central  Google Scholar 

  • Janzen DH (1985) The natural history of mutualisms. In: The biology of mutualism: ecology and evolution. Croom/Helm, London/Sydney, pp 40–99

    Google Scholar 

  • Jakuschkin B, Fievet V, Schwaller L, Fort T, Robin C, Vacher C (2016) Deciphering the Pathobiome: Intra- and Interkingdom Interactions Involving the Pathogen Erysiphe alphitoides. Microb Ecol 72:870–880

    Article  CAS  PubMed  Google Scholar 

  • Jefferson R (1994) The Hologenome. In: Agriculture, environment and the developing world: A future of PCR. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyper diverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448

    Article  CAS  PubMed  Google Scholar 

  • Kadivar H, Stapleton AE (2003) Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microb Ecol 45:353–361

    Article  CAS  PubMed  Google Scholar 

  • Kalogiannis S, Tjamos SE, Stergiou A, Antoniou PP, Ziogas BN, Tjamos EC (2006) Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. Eur J Plant Pathol 116:69–76

    Article  CAS  Google Scholar 

  • Karlsson I, Friberg H, Steinberg C, Persson P (2014) Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One 9:e111786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan M, Bhaskaran R, Mathiyazhagan S, Velazhahan R (2007) Influence of phylloplane colonizing biocontrol agents on the black spot of rose caused by Diplocarpon rosae. J Plant Interact 2:225–231

    Article  CAS  Google Scholar 

  • Kim M, Singh D, Lai-Hoe A, Go R, Abdul Rahim R, Ainuddin AN, Chun J, Adams JM (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microb Ecol 63:674–681

    Article  PubMed  Google Scholar 

  • Klerks MM, Franz E, Van Gent-Pelzer M, Zijlstra C, Van Bruggen AH (2007) Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J 1:620–631

    Article  PubMed  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Chaudhary D, Jangra R (2018) Establishment of antifungal phyllospheric bacteria in potato (Solanum tuberosum L.). Int J Curr Microbiol Appl Sci 7:1048–1056

    Article  CAS  Google Scholar 

  • Kuypers MM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16(5):263

    Article  CAS  PubMed  Google Scholar 

  • Lambais MR, Crowley DE, Cury JC, Bull RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917

    Article  CAS  PubMed  Google Scholar 

  • Larousse M, Galiana E (2017) Microbial partnerships of pathogenic oomycetes. PLoS Pathog 13:e1006028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34(2):133–185

    Google Scholar 

  • Li Y, Wu X, Chen T, Wang W, Liu G, Zhang W, Li S, Wang M, Zhao C, Zhou H, Zhang G (2018) Plant phenotypic traits eventually shape its microbiota: A common garden test. Front Microbiol 9:2479

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magan N, Baxter ES (1996) Effect of increased CO2 concentration and temperature on the phyllosphere mycoflora of winter wheat flag leaves during ripening. Ann Appl Biol 129(2):189–195

    Article  Google Scholar 

  • Mansvelt EL, Hattingh MJ (1987) Scanning electron microscopy of colonization of pear leaves by Pseudomonas syringae pv. syringae. Can J Bot 65:2517–2522

    Article  Google Scholar 

  • Mansvelt EL, Hattingh MJ (1989) Scanning electron microscopy of invasion of apple leaves and blossoms by pseudomonas syringae pv. Syringae Appl Environ Microbiol 55:533–538

    CAS  PubMed  Google Scholar 

  • Mathur S, Sutton J (2017) Personalized medicine could transform healthcare. Biomed Rep 7:3–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Mechri B, Attia F, Tekaya M, Cheheb H, Hammami M (2014) Colonization of olive trees (Olea europaea l.) with the arbuscular mycorrhizal fungus glomus sp. Modified the glycolipids biosynthesis and resulted in accumulation of unsaturated fatty acids. J Plant Physiol 171:1217–1220

    Article  CAS  PubMed  Google Scholar 

  • Mercier J, Lindow SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mew TW, Mew IC, Huang JS (1984) Scanning electron microscopy of virulent and avirulent strains of Xanthomonas campestris pv. oryzae on rice leaves. Phytopathology 74:635–641

    Article  Google Scholar 

  • Meyer SLF, Wergin WP (1998) Colonization of soybean cyst nematode females, cysts, and gelatinous matrices by the fungus Verticillium lecanii. J Nematol 30(4):436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michavila G, Adler C, De Gregorio PR, Lami MJ, Caram Di Santo MC, Zenoff AM, de Cristobal RE, Vincent PA (2017) Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biol 19(4):608–617

    Article  CAS  PubMed  Google Scholar 

  • Mikiciński A, Sobiczewski P, Puławska J, Malusa E (2016) Antagonistic potential of Pseudomonas graminis 49M against Erwinia amylovora, the causal agent of fire blight. Arch Microbiol 198:531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles WG, Daines RH, Rue JW (1977) Presymptomatic egress of Xanthomonas pruni from infected peach leaves. Phytopathology 67(7):895–897

    Article  Google Scholar 

  • Mitter B, Pfaffenbichler N, Sessitsch A (2016) Plant-microbe partnerships in 2020. Microb Biotechnol 9:635–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476(7358):43

    Article  CAS  PubMed  Google Scholar 

  • Morris CE (2002) Phyllosphere. In: Encyclopedia of life sciences. Wiley, Chichester, pp 1–8

    Google Scholar 

  • Morris CE, Kinkel L (2002) Fifty years of phyllosphere microbiology: significant contributions to research in related fields. In: Lindow SE, Hecht-Poinar EI, Vern JE (eds) Phyllosphere microbiology. APS Press, St. Paul, Minn, pp 365–375

    Google Scholar 

  • Muller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: Systems-level insights and perspectives. Annu Rev Genet 50:211–234

    Article  CAS  PubMed  Google Scholar 

  • Nuclo RL, Johnson KB, Stockwell VO, Sugar D (1998) Secondary colonization of pear blossoms by two bacterial antagonists of the fire blight pathogen. Plant Dis 82:661–668

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan M, Gerard EM, Waipara NW, Young SD, Glare TR, Barrell PJ, Conner AJ (2005) Microbial communities of Solanum tuberosum and magainin-producing transgenic lines. Plant Soil 266:47–56

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Ottesen AR, Peña AG, White JR, Pettengill JB, Li C, Allard S, Rideout S, Allard M, Hill T, Evans P, Strain E (2013) Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol 13:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottesen AR, Gorham S, Pettengill JB, Rideout S, Evans P, Brown E (2015) The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes. J Sci Food Agric 95:1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor 2:1117–1142

    Google Scholar 

  • Pankova YI, Konyushkova MV (2013) Effect of global warming on soil salinity of the arid regions. Russ Agric Sci 39:464–467

    Article  Google Scholar 

  • Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedron T, Sansonetti P (2008) Commensals, bacterial pathogens and intestinal inflammation: an intriguing menage a trois. Cell Host Microbe 3:344–347

    Article  CAS  PubMed  Google Scholar 

  • Peredo EL, Simmons SL (2018) Leaf-FISH: Microscale imaging of bacterial taxa on phyllosphere. Front Microbiol 8:1–14

    Google Scholar 

  • Prince DC, Rallapalli G, Xu D, Schoonbeek HJ, Cevik V, Asai S, Kemen E, Cruz-Mireles N, Kemen A, Belhaj K, Schornack S, Kamoun S, Holub EB, Halkier BA, Jones JD (2017) Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biol 15:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pusey PL, Stockwell VO, Reardon CL, Smits TH, Duffy B (2011) Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology 101:1234–1241

    Article  CAS  PubMed  Google Scholar 

  • Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasche F, Marco-Noales E, Velvis H, van Overbeek LS, López MM, van Elsas JD, Sessitsch A (2006a) Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil 289:123–140

    Article  CAS  Google Scholar 

  • Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006b) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum annuum L.). Can J Microbiol 52:1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD, Sessitsch A (2006c) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566

    Article  CAS  Google Scholar 

  • Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ (2012) Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893

    Article  PubMed  PubMed Central  Google Scholar 

  • Reisberg EE, Hildebrandt U, Riederer M, Hentschel U (2013) Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS One 8:e78613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter B, Sessitsch A (2006) Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can J Microbiol 52:140–149

    Article  CAS  PubMed  Google Scholar 

  • Remus-Emsermann MN, Lucker S, Muller DB, Potthoff E, Daims H, Vorholt JA (2014) Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol 16:2329–2340

    Article  CAS  PubMed  Google Scholar 

  • Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Metraux JP, L'Haridon F (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Roos IM, Hattingh MJ (1983) Scanning Electron Microscopy of Pseudomonas syringae pv, morsprunorum on sweet cherry leaves. J Phytopathol 108:18–25

    Article  Google Scholar 

  • Ruhe J, Agler MT, Placzek A, Kramer K, Finkemeier I, Kemen EM (2016) Obligate biotroph pathogens of the genus Albugo are better adapted to active host defense compared to niche competitors. Front Plant Sci 7:820

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruinen J (1956) Occurrence of Beijerinckia species in the ‘phyllosphere’. Nature 177:220–221

    Article  Google Scholar 

  • Runion GB, Curl EA, Rogers HH, Backman PA, Rodriguez-Kabana R, Helms BE (1994) Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric For Meteorol 70:117–130

    Article  Google Scholar 

  • Sahoo RK, Bhardwaj D, Tuteja N (2013) Biofertilizers: A sustainable eco-friendly agricultural approach to crop improvement. In: Tuteja N, Singh Gill S (eds) Plant acclimation to environmental stress. Springer, New York, pp 403–432

    Chapter  Google Scholar 

  • Saijo Y, Loo EP, Yasuda S (2018) Pattern recognition receptors and signaling in plant-microbe interactions. Plant J 93:592–613

    Article  CAS  PubMed  Google Scholar 

  • Sapkota R, Knorr K, Jørgensen LN, O'Hanlon KA, Nicolaisen M (2015) Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol 207:1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The Plant Microbiome at Work. Mol Plant-Microbe Interact 28:212–217

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Schonherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 57:2471–2491

    Article  CAS  PubMed  Google Scholar 

  • Sengupta B, Naudi AS, Samanta RK, Pal D, Sengupta DN, Sen SP (1981) Nitrogen fixation in the phyllosphere of tropical plants: occurrence of phyllosphere nitrogen-fixing microorganisms in eastern India and their utility for the growth and nutrition of host plants. Ann Bot 48:705–716

    Article  CAS  Google Scholar 

  • Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Sandjong BT, Bodrossy L (2006) Diagnostic microbial microarrays in soil ecology. New Phytol 171:719–736

    Article  CAS  PubMed  Google Scholar 

  • Shrestha BK, Karki HS, Groth DE, Jungkhun N, Ham JH (2016) Biological control activities of rice-associated Bacillus sp. Strains against sheath blight and bacterial panicle blight of rice. PLoS One 11:e0146764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S (2014) Guttation: quantification, microbiology and implications for phytopathology. In: Lüttge U, Beyschlag W, Cushman J (eds) Progress in botany. Progress in botany (genetics – physiology – systematics – ecology). Springer, Berlin/Heidelberg

    Google Scholar 

  • Sousa LP, Da Silva MJ, Mondego JMC (2018) Leaf-associated bacterial microbiota of coffee and its correlation with manganese and calcium levels on leaves. Genet Mol Biol 41:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapleton AE, Simmons SJ (2006) Plant control of phyllosphere diversity: genotype interactions with ultraviolet-B radiation. In: Microbial ecology of aerial plant surfaces

    Google Scholar 

  • Stevenson A, Burkhardt J, Cockell CS, Cray JA, Dijksterhuis J, Fox-Powell M, Kee TP, Kminek G, Mcgenity TJ, Timmis KN, Timson DJ, Voytek MA, Westall F, Yakimov MM, Hallsworth JE (2015) Multiplication of microbes below 0.690 water activity: implications for terrestrial and extra-terrestrial life. Environ Microbiol 17:257–277

    Article  PubMed  Google Scholar 

  • Stintzi A, Barnes C, Xu J, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci U S A 97:10691–10696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2002) Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain eh252 in orchards. Phytopathology 92:1202–1209

    Article  CAS  PubMed  Google Scholar 

  • Stromberg KD, Kinkel LL, Leonard KJ (2000) Interactions between Xanthomonas translucens pv. translucens, the causal agent of bacterial leaf streak of wheat, and bacterial epiphytes in the wheat phyllosphere. Biol Control 17:61–72

    Article  Google Scholar 

  • Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY (2014) Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One 9:e114196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surico G (1993) Scanning electron microscopy of olive and oleander leaves colonized by Pseudomonas syringae subsp. savastanoi. J Phytopathol 138(1):31–40

    Article  Google Scholar 

  • Sy A, Timmers AC, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microb 71:7245–7252

    Article  CAS  Google Scholar 

  • Thapa S, Prasanna R (2018) Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbiol 68:229–245

    Article  CAS  Google Scholar 

  • Thapa S, Ranjan K, Ramakrishnan B, Velmourougane K, Prasanna R (2018) Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. J Basic Microbiol 58:172–186

    Article  CAS  PubMed  Google Scholar 

  • Thompson IP, Bailey MJ, Fenlon JS, Fermor TR, Lilley AK, Lynch JM, McCormack PJ, McQuilken MP, Purdy KJ, Rainey PB, Whipps JM (1993) Quantitative and qualitative seasonal-changes in the microbial community from the phyllosphere of sugar-beet (Beta vulgaris). Plant Soil 150:177–191

    Article  Google Scholar 

  • Timmer LW, Marios JJ, Achor D (1987) Growth and survival of Xanthomonads under conditions nonconductive to disease development. Phytopathology 77:1341–1345

    Article  Google Scholar 

  • Tukey HB (1970) The leaching of substances from plants. Annu Rev Plant Physiol 21:305–324

    Article  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Uku J, Bjork M, Bergman B, Diez B (2007) Characterization and comparison of prokaryotic epiphytes associated with three east African sea grasses. J Phycol 43:768–779

    Article  CAS  Google Scholar 

  • Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE (2016) The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst 47:1–24

    Article  Google Scholar 

  • Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, Lebrun MH, Le Loir Y, Ogliastro M, Petit MA, Roumagnac P, Candresse T (2014) Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel C, Bodenhausen N, Gruissem W, Vorholt JA (2016) The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol 212(1):192–207

    Article  CAS  PubMed  Google Scholar 

  • Volksch B, May R (2001) Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microb Ecol 41:132–139

    PubMed  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  CAS  PubMed  Google Scholar 

  • Wagner MR, Lundberg DS, Tijana G, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:1–15

    Article  CAS  Google Scholar 

  • Wallace J, Kremling KA, Kovar LL, Buckler ES (2018) Quantitative genetics of the maize leaf microbiome. Phytobiomes J.: In Press 2:208

    Article  Google Scholar 

  • Wang HB, Zhang ZX, Li H, He HB, Fang CX, Zhang AJ, Li QS, Chen RS, Guo XK, Lin HF, Wu LK, Lin S, Chen T, Lin RY, Peng XX, Lin WX (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Kohzu A, Suda W, Yamamura S, Takamatsu T, Takenaka A, Koshikawa MK, Hayashi S, Watanabe M (2016) Microbial nitrification in through fall of a Japanese cedar associated with archaea from the tree canopy. Springerplus 5:1596

    Article  PubMed  PubMed Central  Google Scholar 

  • Wildman HG, Parkinson D (1981) Seasonal changes in water-soluble carbohydrates on Populus tremuloides leaves. Can J Bot 59:862–869

    Article  CAS  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  CAS  PubMed  Google Scholar 

  • Williams TR, Moyne AL, Harris LJ, Marco ML (2013) Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One 8:e68642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson M, Lindow SE (1994a) Ecological similarity and coexistence of epiphytic ice-nucleating (ice+) Pseudomonas syringae strains and a non-ice-nucleating (ice-) biological control agent. Appl Environ Microbiol 60:3128–3137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson M, Lindow SE (1994b) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60(12):4468–4477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Wang H, Zhang Z, Lin R, Zhang Z, Lin W (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS One 6(5):e20611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhao F (2018) Single-cell metagenomics: Challenges and applications. Protein Cell 9:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RKP, Kakamanoli K, Despoina V (2010) Estimating bacterial population on the phyllosphere by serial dilution plating and leaf imprint methods. Ecoprint: Int J Ecol 17:47–52

    Article  Google Scholar 

  • Yang CH, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci U S A 98:3889–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashiro E, Spear RN, McManus PS (2011) Culture- dependent and culture independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 110:1284–1296

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717

    Article  CAS  PubMed  Google Scholar 

  • Yuen GY, Steadman JR, Lindgren DT, Schaff D, Jochum C (2001) Bean rust biological control using bacterial agents. Crop Prot 20:395–402

    Article  Google Scholar 

  • Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89:817–822

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Bai Z, Hoefel D, Tang L, Wang X, Li B, Li Z, Zhuang G (2009) The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. Sci Total Environ 407:1915–1922

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Luo L, Tan X, Kong X, Yang J, Wang D, Zhang D, Jin D, Liu Y (2018) Pumpkin powdery mildew disease severity influences the fungal diversity of the phyllosphere. Peer J 6:e4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arye Harel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arya, G.C., Harel, A. (2019). Phyllosphere and Its Potential Role in Sustainable Agriculture. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-8739-5_3

Download citation

Publish with us

Policies and ethics