Skip to main content

An Overview of Nitro Group-Containing Compounds and Herbicides Degradation in Microorganisms

  • Chapter
  • First Online:
Microbial Metabolism of Xenobiotic Compounds

Abstract

Basically, nitro functional group-containing chemicals have been used to synthesize various useful products like dyes, pesticides and solvents, and also military products and so on. Hence, many nitroaromatics (including nitrophenols) have been continuously released into the environment and appear in the soil and water. Some are known to be toxic due to their great impact on living systems (especially on health). Most such chemicals (nitroaromatic compounds) are listed as priority chemicals by the Environmental Protection Agency (EPA). The vast use of such chemicals and their toxic effects had led to the study of the degradation of nitro group-containing chemicals by microbes (an easily available and cost-effective treatment). In view of this, we discuss the degradation of a few nitro group-containing compounds and herbicide(s) by microorganisms from published literature, and we consider the future perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora, P. K., Srivastav, A., & Singh, V. P. (2014). Bacterial degradation of nitrophenols and their derivatives. Journal of Hazardous Materials, 266, 42–59.

    CAS  Google Scholar 

  • Arora, P. K., Srivastava, A., Garg, S. K., & Singh, V. P. (2017). Recent advances in degradation of chloronitrophenols. Bioresource Technology, 250, 902–909.

    Google Scholar 

  • Beard, R. R., & Noe, J. T. (1981). In G. D. Clayton & F. E. Clayton (Eds.), Patty’s handbook of industrial hygiene and toxicology (Vol. 2A, 3rd ed., pp. 2413–2489). New York: Wiley-Interscience.

    Google Scholar 

  • Behrend, C., & Heesche-Wagner, K. (1999). Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB22-2. Applied and Environmental Microbiology, 65, 1372–1377.

    CAS  Google Scholar 

  • Blasco, R., Moore, E., Wray, V., Pieper, D. H., Timmis, K., & Castillo, F. (1999). 3-Nitroadipate, a metabolic intermediate for the mineralization of 2,4-dinitrophenol by a new strain of a Rhodococcus species. Journal of Bacteriology, 181, 149–152.

    CAS  Google Scholar 

  • Boopathy, R. (1994). Transformation of nitroaromatic compounds by a methanogenic bacterium, Methanococcus sp. (strain B). Archives of Microbiology, 62, 167–172.

    Google Scholar 

  • Burkul, R. M., Ranade, S. V., & Pangarkar, B. L. (2015). Removal of pesticides by using various treatment method: Review. International Journal of Emerging Trends in Engineering and Basic Sciences, 2, 88–91.

    Google Scholar 

  • Douglas, T. A., Walsh, M. E., McGrath, C. J., Weiss, C. A., Jaramillo, A. M., & Trainor, T. P. (2011). Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions. Environmental Toxicology and Chemistry, 30, 345–353.

    CAS  Google Scholar 

  • Dunlap, K. L. (1982). In H. F. Mark, D. F. Othmer, C. G. Overberger, & G. T. Seaborg (Eds.), Kirk and Othmer’s encyclopaedia of chemical technology (Vol. 15, 3rd ed., pp. 916–932). New York: Wiley.

    Google Scholar 

  • Ecker, S., Widmann, T., Lenke, H., Dickel, O., Fischer, P., Bruhn, C., & Knackmuss, H. -J. (1992). Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP 134 and JMP 222. Archives of Microbiology, 158(2), 149–154.

    Google Scholar 

  • Edalli, V. A., Patil, K. S., Le, V. V., & Mulla, S. I. (2018). An overview of aniline and chloroaniline compounds as environmental pollutants. Significances of Bioengineering & Biosciences, 1(4), 1–2. https://doi.org/10.31031/SBB.2018.01.000519.

    Article  Google Scholar 

  • Gosh, A., Khurana, M., Chauhan, A., Takeo, M., Chakraborti, A. K., & Jain, R. K. (2010). Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol and 2,4-dinitrophenol by Rhodococcusimtechensis strain RKJ300. Environmental Science and Technology, 44, 1067–1077.

    Google Scholar 

  • Gundersen, K., & Jensen, H. L. (1956). A soil bacterium decomposing organic nitro-compounds. Acta Agriculturae Scandinavica, 6, 110–114.

    Google Scholar 

  • Haghighi-Podeh, M. R., & Bhattacharya, S. K. (1996). Fate and toxic effects of nitrophenols on anaerobic treatment systems. Water Science and Technology, 34, 345–350.

    CAS  Google Scholar 

  • Haizhen, W., Chaohai, W., Yaqin, W., Qincong, H., & Shizhong, L. (2009). Degradation of o-chloronitrobenzene as the carbon & nitrogen sources by Pseudomonas putida OCNB-1. Journal of Environmental Sciences, 21, 89–95.

    Google Scholar 

  • Hanne, L. F., Kirk, L. L., Appel, S. M., Narayan, A. D., & Bains, K. K. (1993). Degradation and induction specificity in actinomycetes that degrade p-nitrophenol. Applied and Environmental Microbiology, 59, 3505–3508.

    CAS  Google Scholar 

  • Hess, T. F., Silverstein, J., & Schmidt, S. K. (1993). Effect of glucose on 2,4-dinitrophenol degradation kinetics in sequencing batch reactors. Water Environment Research, 65(1), 73–81.

    CAS  Google Scholar 

  • Hirai, K. (1999). Structural evolution and synthesis of diphenyl ethers, cyclic imides, and related compounds. In P. Boger & K. Wakabayashi (Eds.), Peroxidizing herbicides (pp. 15–72). Berlin: Springer.

    Google Scholar 

  • Hirooka, T., Nagase, H., Hirata, K., & Miyamoto, K. (2006). Degradation of 2,4-dinitrophenol by a mixed culture of photoautotrophic microorganisms. Biochemical Engineering Journal, 29(1), 157–162.

    CAS  Google Scholar 

  • Hoskeri, R. S., Mulla, S. I., Shouche, Y. S., & Ninnekar, H. Z. (2011). Biodegradation of 4- chlorobenzoic acid by Pseudomonas aeruginosa PA01 NC. Biodegradation, 22, 509–516.

    CAS  Google Scholar 

  • Hoskeri, R. S., Mulla, S. I., & Ninnekar, H. Z. (2014). Biodegradation of chloroaromatic pollutants by bacterial consortium immobilized in polyurethene foam and other matrices. Biocatalysis and Agricultural Biotechnology, 3, 390–396.

    Google Scholar 

  • Iwaki, H., Abe, K., & Hasegawa, Y. (2007). Isolation and characterization of a new 2,4-dinitrophenol-degrading bacterium Burkholderia sp. strain KU-46 and its degradation pathway. FEMS Microbiology Letters, 274(1), 112–117.

    CAS  Google Scholar 

  • Jain, R. K., Dreisbach, J. H., & Spain, J. C. (1994). Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Applied and Environmental Microbiology, 60, 3030–3032.

    CAS  Google Scholar 

  • Jensen, H. L., & Gundersen, K. (1955). Biological decomposition of aromatic nitro compounds. Nature, 175, 341.

    CAS  Google Scholar 

  • Jensen, H. L., & Lautrup-Larsen, G. (1967). Microorganisms that decompose nitro-aromatic compounds, with special reference to dinitro-ortho-cresol. Acta Agriculturae Scandinavica, 17, 115–126.

    CAS  Google Scholar 

  • Ju, K. S., & Parales, R. E. (2010). Nitroaromatic compounds, from synthesis to biodegradation. Microbiology and Molecular Biology Reviews, 74, 250–272.

    CAS  Google Scholar 

  • Kaake, R. H., Crawford, D. L., & Crawford, R. L. (1995). Biodegradation of the nitroaromatic herbicide dinoseb (2-sec-butyl-4,6-dinitrophenol) under reducing conditions. Biodegradation, 6, 329–337.

    CAS  Google Scholar 

  • Kadiyala, V., & Spain, J. C. (1998). A two-component monooxygenasecatalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Applied and Environmental Microbiology, 64, 2479–2484.

    CAS  Google Scholar 

  • Khalid, A., Arshad, M., & Crowley, D. E. (2009). Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater. Water Research, 43, 1110–1116.

    CAS  Google Scholar 

  • Kinouchi, T., & Ohnishi, Y. (1983). Purification and characterization of 1-nitropyrene nitroreductases from Bacteroidesfragilis. Applied and Environmental Microbiology, 46, 596–604.

    CAS  Google Scholar 

  • Kitagawa, W., Kimura, N., & Kamagata, Y. (2004). A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcusopacus SAO101. Journal of Bacteriology, 186, 4894–4902.

    CAS  Google Scholar 

  • Kovacic, P., & Somanathan, R. (2014). Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. Journal of Applied Toxicology, 34, 810–824.

    CAS  Google Scholar 

  • Lenke, H., & Knackmuss, H. J. (1992). Initial hydrogenation during catabolism of picric acid by Rhodococcuserythropolis HL 24-2. Applied and Environmental Microbiology, 58, 2933–2937.

    CAS  Google Scholar 

  • Li, Z., & Yang, P. (2018). Review on physicochemical, chemical, and biological processes for pharmaceutical wastewater. IOP Conference Series: Earth and Environmental Science, 113, 012185.

    Google Scholar 

  • Li, Y. Y., Zhou, B., Li, W., Peng, X., Zhang, J. S., & Yan, Y. C. (2008). Mineralization of p-nitrophenol by a new isolate Arthrobacter sp. Y1. Journal of Environmental Science and Health. Part. B, 43, 692–697.

    CAS  Google Scholar 

  • Megadi, V. B., Tallur, P. N., Mulla, S. I., & Ninnekar, H. Z. (2010). Bacterial degradation of Fungicide captan. Journal of Agricultural and Food Chemistry, 58, 12863–12868.

    CAS  Google Scholar 

  • Meulenberg, R., Pepi, M., & de Bont, J. A. M. (1996). Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol. Biodegradation, 7, 303–311.

    CAS  Google Scholar 

  • Min, J., Wang, B., & Hu, X. (2017a). Effect of inoculation of Burkholderia sp. strain SJ98 on bacterial community dynamics and para-nitrophenol, 3-methyl-4-nitrophenol, and 2-chloro-4-nitrophenol degradation in soil. Scientific Reports, 7, 5983.

    Google Scholar 

  • Min, J., Chen, W., Wang, J., & Hu, X. (2017b). Genetic and biochemical characterization of 2-chloro-5-nitrophenol degradation in a newly isolated bacterium, Cupriavidus sp. Strain CNP-8. Frontiers in Microbiology, 8, 1778.

    Google Scholar 

  • Min, J., Wang, J., Chen, W., & Hu, X. (2018). Biodegradation of 2-chloro-4-nitrophenol via a hydroxyquinol pathway by a Gram-negative bacterium, Cupriavidus sp. strain CNP-8. AMB Express, 8, 43.

    Google Scholar 

  • Mulla, S. I., Hoskeri, R. S., Shouche, Y. S., & Ninnekar, H. Z. (2011a). Biodegradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1. Biodegradation, 22, 95–102.

    CAS  Google Scholar 

  • Mulla, S. I., Manjunatha, T. P., Hoskeri, R. S., Tallur, P. N., & Ninnekar, H. Z. (2011b). Biodegradation of 3-nitrobenzoate by Bacillus flexus strain XJU-4. World Journal of Microbiology and Biotechnology, 27, 1587–1592.

    CAS  Google Scholar 

  • Mulla, S. I., Talwar, M. P., Hoskeri, R. S., & Ninnekar, H. Z. (2012). Enhanced degradation of 3-nitrobenzoate by immobilized cells of Bacillus flexus strain XJU-4. Biotechnology and Bioprocess Engineering, 17, 1294–1299.

    CAS  Google Scholar 

  • Mulla, S. I., Talwar, M. P., & Ninnekar, H. Z. (2014). Bioremediation of 2,4,6-Trinitrotoluene explosive residues. In S. N. Singh (Ed.), Biological remediation of explosive residues (Environmental science and engineering) (pp. 201–233). Cham: Springer.

    Google Scholar 

  • Mulla, S. I., Bangeppagari, M. D., Mahadevan, G. D., Eqani, S. A. M. A. S., Sajjan, D. B., Tallur, P. N., Megadi, V. B., Harichandra, Z., & Ninnekar, H. Z. (2016a). Biodegradation of 3-chlorobenzoate and 3-hydroxybenzoate by polyurethane foam immobilized cells of Bacillus sp. OS13. Journal of Environmental Chemical Engineering, 4(2), 1423–1431.

    CAS  Google Scholar 

  • Mulla, S. I., Sun, Q., Hu, A., Wang, Y., Ashfaq, M., Eqani, S. A. M. A. S., & Yu, C. P. (2016b). Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures. PLoS One, 11, e0165013.

    Google Scholar 

  • Mulla, S. I., Wang, H., Sun, Q., Hu, A., & Yu, C. P. (2016c). Characterization of triclosan metabolism in Sphingomonassp. strain YL-JM2C. Scientific Reports, 6, 21965.

    CAS  Google Scholar 

  • Mulla, S. I., Hu, A., Wang, Y., Sun, Q., Huang, S. L., Wang, H., & Yu, C. P. (2016d). Degradation of triclocarban by a triclosan-degrading Sphingomonassp. strain YL-JM2C. Chemosphere, 144, 292–296.

    CAS  Google Scholar 

  • Mulla, S. I., Ameen, F., Tallur, P. N., Bharagava, R. N., Bangeppagari, M., SAMAS, E., Bagewadi, Z. K., Mahadevan, G. D., Yu, C. P., & Ninnekar, H. Z. (2017). Aerobic degradation of fenvalerate by a gram-positive bacterium, Bacillus flexus strain XJU-4. 3 Biotech, 7, 320.

    Google Scholar 

  • Mulla, S. I., Hu, A., Sun, Q., Li, J., Suanon, F., Ashfaq, M., & Yu, C. P. (2018). Biodegradation of sulfamethoxazole in bacteria from three different origins. Journal of Environmental Management, 206, 93–102.

    CAS  Google Scholar 

  • Nishino, N., & Spain, J. C. (1993). Cell density-dependent adaptation of Pseudomonas putida to biodegradation of p-nitrophenol. Environmental Science & Technology, 27, 489–494.

    CAS  Google Scholar 

  • Nishino, S. F., Spain, J. C., & He, Z. (2000). Strategies for aerobic degradation of nitroaromatic compounds by bacteria: Process discovery to field application. In J. C. Spain, J. B. Hugeghes, & H. J. Knackmuss (Eds.), Biodegradation of nitroaromatic compounds and explosives (pp. 7–61). New York: Lewis Publishing Co.

    Google Scholar 

  • Oren, A., Gurevich, P., & Henis, Y. (1991). Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobiumpraevalens and Sporohalobactermarismortui. Applied and Environmental Microbiology, 57(11), 3367–3370.

    CAS  Google Scholar 

  • Osin, O. A., Yu, T., Cai, X., Jiang, Y., Peng, G., Cheng, X., Li, R., Qin, Y., & Lin, S. (2018). Photocatalytic degradation of 4-nitrophenol by C, N-TiO2: degradation efficiency vs. embryonic toxicity of the resulting compounds. Frontiers in Chemistry, 6, 192.

    Google Scholar 

  • Padda, R. S., Wang, C., Hughes, J. B., Kutty, R., & Bennett, G. N. (2003). Mutagenicity of nitroaromatic degradation compounds. Environmental Toxicology and Chemistry, 22, 2293–2297.

    CAS  Google Scholar 

  • Pakala, S. B., Gorla, P., Pinjari, A. B., Krovidi, R. J., Baru, R., Yanamandra, M., Merrick, M., & Siddavattam, D. (2007). Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of p-nitrophenol 2-hydroxylase in a Gram-negative Serratiasp. strain DS001. Applied Microbiology and Biotechnology, 73, 1452–1462.

    CAS  Google Scholar 

  • Plunkett, E. R. (1966). Handbook of industrial toxicology (pp. 152–153). New York: Chemical Publishing Co.

    Google Scholar 

  • Purohit, V., & Basu, A. K. (2000). Mutagenicity of nitroaromatic compounds. Chemical Research in Toxicology, 13, 673–692.

    CAS  Google Scholar 

  • Rajan, J., Valli, K., Perkins, R. E., Sariaslani, F. S., Barns, S. M., Reysenbach, A. L., Rehm, S., Ehringer, M., & Pace, N. R. (1996). Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. Journal of Industrial Microbiology & Biotechnology, 16, 319–324.

    CAS  Google Scholar 

  • Rieger, P. G., & Knackmuss, H. J. (1995). Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In J. C. Spain (Ed.), Biodegradation of nitroaromatic compounds (Vol. 49, pp. 1–18). New York: Plenum Press.

    Google Scholar 

  • Schafer, A., Harms, H., & Zehnder, A. J. (1996). Biodegradation of 4-nitroanisole by two Rhodococcusspp. Biodegradation, 7, 249–255.

    CAS  Google Scholar 

  • Schenzle, A., Lenke, H., Fischer, P., Williams, P. A., & Knackmuss, H. J. (1997). Catabolism of 3-nitrophenol by Ralstoniaeutropha JMP134. Applied and Environmental Microbiology, 63, 1421–1427.

    CAS  Google Scholar 

  • Schenzle, A., Lenke, H., Spain, J. C., & Knackmuss, H. J. (1999). Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstoniaeutropha JMP134. Applied and Environmental Microbiology, 65, 2317–2323.

    CAS  Google Scholar 

  • Shen, J., Zhang, J., Zuo, Y., Wang, L., Sun, X., Li, J., Han, W., & He, R. (2009). Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. Journal of Hazardous Materials, 163, 1199–1206.

    CAS  Google Scholar 

  • Spain, J. C. (1995). Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 49, 523–555.

    CAS  Google Scholar 

  • Spain, J. C., & Gibson, D. T. (1991). Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Applied and Environmental Microbiology, 57, 812–819.

    CAS  Google Scholar 

  • Spain, J. C., Hughes, J. B., & Knackmuss, H. J. (Eds.). (2000). Biodegradation of nitroaromatic compounds and explosives. Boca Raton: CRC Press.

    Google Scholar 

  • Stevens, T. O., Crawford, R. L., & Crawford, D. L. (1991). Selection and isolation of bacteria capable of degrading dinoseb (2-sec-butyl-4,6-dinitrophenol). Biodegradation, 2, 1–13.

    CAS  Google Scholar 

  • Subashchandrabose, S. R., Venkateswarlu, K., Krishnan, K., Naidu, R., Lockington, R., & Megharaj, M. (2018). Rhodococcuswratislaviensis strain 9: An efficient p-nitrophenol degrader with a great potential for bioremediation. Journal of Hazardous Materials, 347, 176–183.

    CAS  Google Scholar 

  • Tabak, H. H., Chambers, C. W., & Kabler, P. W. (1964). Microbial metabolism of aromatic compounds I.: Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. Journal of Bacteriology, 87, 910–919.

    CAS  Google Scholar 

  • Takeo, M., Murakami, M., Niihara, S., Yamamoto, K., Nishimura, M., Kato, D., & Negoro, S. (2008). Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. strain PN1: Characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. Journal of Bacteriology, 190, 7367–7374.

    CAS  Google Scholar 

  • Tallur, P. N., Mulla, S. I., Megadi, V. B., Talwar, M. P., & Ninnekar, H. Z. (2015). Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1. Brazilian Journal of Microbiology, 46, 667–672.

    CAS  Google Scholar 

  • Talwar, M. P., Mulla, S. I., & Ninnekar, H. Z. (2014). Biodegradation of organophosphate pesticide quinalphos by Ochrobactrumsp. strain HZM. Journal of Applied Microbiology, 117, 1283–1292.

    CAS  Google Scholar 

  • Teramoto, H., Tanaka, H., & Wariishi, H. (2004). Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 66(3), 312–317.

    Google Scholar 

  • Tewfik, M. S., & Evans, W. C. (1966). The metabolism of 3,5-dinitro-o-cresol (DNOC). The Biochemical Journal, 99, 31–3231.

    Google Scholar 

  • Tian, J., An, X., Liu, J., Yu, C., Zhao, R., Wang, J., & Chen, L. (2018). Optimization of 4-nitrophenol degradation by an isolated bacterium Arthrobacter sp. and the novel biodegradation pathways under nutrition deficient conditions. Journal of Environmental Engineering, 144(4), 04018012.

    Google Scholar 

  • Unell, M., Nordin, K., Jernberg, C., Stenström, J., & Jansson, J. K. (2008). Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation, 19, 495–505.

    CAS  Google Scholar 

  • Wan, N., Gu, J. D., & Yan, Y. (2007). Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. International Biodeterioration and Biodegradation, 59, 90–96.

    CAS  Google Scholar 

  • Wang, J., Ren, L., Jia, Y., Ruth, N., Shi, Y., Qiao, C., & Yan, Y. (2016). Degradation characteristics and metabolic pathway of 4-nitrophenol by a halotolerant bacterium Arthrobacter sp. CN2. Toxicological and Environmental Chemistry, 98, 226–240.

    Google Scholar 

  • Ware, G. W. (1994). The pesticide book (4th ed.). Fresno: Thompson Publications.

    Google Scholar 

  • White, P. A., & Claxton, L. D. (2004). Mutagens in contaminated soil: A review. Mutation Research, 567, 227–345.

    CAS  Google Scholar 

  • Windholz, M., Budavari, S., Stroumtsos, L. Y., & Fertig, M. (1976). Merck Index (9th ed., pp. 6408–6474). Whitehouse Station: Merck and Co., Inc.

    Google Scholar 

  • Xiao, Y., Zhang, J. J., Liu, H., & Zhou, N. Y. (2007). Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. strain NyZ215. Journal of Bacteriology, 189, 6587–6593.

    CAS  Google Scholar 

  • Ye, J., Singh, A., & Ward, O. P. (2004). Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World Journal of Microbiology and Biotechnology, 20, 117–135.

    CAS  Google Scholar 

  • Yue, W., Chen, M., Cheng, Z., Xie, L., & Li, M. (2018). Bioaugmentation of strain Methylobacterium sp. C1 towards p-nitrophenol removal with broad spectrum coaggregating bacteria in sequencing batch biofilm reactors. Journal of Hazardous Materials, 344, 431–440.

    CAS  Google Scholar 

  • Zeyer, J., & Kearney, P. C. (1984). Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. Journal of Agricultural and Food Chemistry, 32, 238–242.

    CAS  Google Scholar 

  • Zeyer, J., Kocher, H. P., & Timmis, K. N. (1986). Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Applied and Environmental Microbiology, 52(2), 334–339.

    CAS  Google Scholar 

  • Zhang, J. J., Liu, H., Xiao, Y., Zhang, X. E., & Zhou, N. Y. (2009). Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. Journal of Bacteriology, 191, 2703–2710.

    CAS  Google Scholar 

  • Zin, S. M., Habib, S., Yasid, N. A., & Ahmad, S. A. (2018). A Review on Microbial Degradation of 2,4-Dinitrophenol. Journal of Environmental Microbiology and Toxicology, 6, 28–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulla, S.I. et al. (2019). An Overview of Nitro Group-Containing Compounds and Herbicides Degradation in Microorganisms. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_16

Download citation

Publish with us

Policies and ethics