Skip to main content

Signaling Pathways in Leukemic Stem Cells

  • Chapter
  • First Online:
Leukemia Stem Cells in Hematologic Malignancies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1143))

Abstract

Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) utilize many of the same signaling pathways for their maintenance and survival. In this review, we will focus on several signaling pathways whose roles have been extensively studied in both HSCs and LSCs. Our main focus will be on the PI3K/AKT/mTOR pathway and several of its regulators and downstream effectors. We will also discuss several other signaling pathways of particular importance in LSCs, including the WNT/β-catenin pathway, the NOTCH pathway, and the TGFβ pathway. For each of these pathways, we will emphasize differences in how these pathways operate in LSCs, compared to their function in HSCs, to highlight opportunities for the specific therapeutic targeting of LSCs. We will also highlight areas of crosstalk between multiple signaling pathways that may affect LSC function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemia

APC:

Adenomatous polyposis coli

BCR-ABL:

Fusion of breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog 1 (ABL)

Cbf-1:

Centromere-binding protein 1

CLL:

Chronic lymphoblastic leukemia

CML:

Chronic myeloid leukemia

Co-Smad:

Common-partner Smad

DEPTOR:

DEP domain-containing mTOR-interacting protein

GPCRs:

G-protein-coupled receptors

GSK-3β:

Glycogen synthase kinase-3β

Hes-1:

Hairy and enhancer of split-1

HSC:

Hematopoietic stem cell

HSPC:

Hematopoietic stem and progenitor cell

IKK:

IκB kinase

I-Smad:

Inhibitory Smad

JNK:

Jun N-terminal kinase

LEF:

Lymphoid enhancer factor

Lrp5/6:

Lipoprotein receptor-related protein 5 or 6

LSC:

Leukemic stem cell

LSK:

Lineage negative, Sca1+, cKit-

MAPK:

Mitogen-activated protein kinase

MEK:

Mitogen-activated protein kinase

MLL:

Mixed lineage leukemia

mLST8:

Mammalian lethal with sec-13 protein 8

mSin1:

Mammalian stress-activated map kinase-interacting protein 1

mTOR:

Mechanistic target of rapamycin

mTORC1:

mTOR complex 1

mTORC2:

mTOR complex 2

NICD:

Notch intracellular domain

PDK1:

Pyruvate dehydrogenase kinase 1

PH:

Pleckstrin homology

PI3K:

Phosphatidylinositol 3-kinase

PIP2:

Phosphatidylinositol (3,4)-diphosphate

PIP3:

Phosphatidylinositol (3,4,5)-triphosphate

PORCN:

Porcupine

PRAS40:

Proline-rich Akt substrate 40 kDa

Protor1/2:

Protein observed with Rictor 1 and 2

PTEN:

Phosphatase and tensin homolog

Raptor:

Regulatory-associated protein of mammalian target of rapamycin

R-Smad:

Receptor-mediated Smad

RTK:

Receptor tyrosine kinase

SH2:

Src-homology 2

SHIP:

SH2-containing inositol 5′-phosphatase

SIRT1:

NAD-dependent deacetylase sirtuin-1

T-ALL:

T-cell acute lymphoblastic leukemia

TCF:

T-cell factor

TGFβ:

Transforming growth factor-beta

TKI:

Tyrosine kinase inhibitor

TSC1:

Tuberous sclerosis 1

TSC2:

Tuberous sclerosis 2

TβRI:

TGFβ-type I receptor

TβRII:

TGFβ-type II receptor

References

  1. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R (2014) Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci U S A 111(7):2548–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6(6):587–596

    Article  CAS  PubMed  Google Scholar 

  3. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19(1):138–152

    Article  CAS  PubMed  Google Scholar 

  4. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442(7104):818–822

    Article  CAS  PubMed  Google Scholar 

  5. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11(5):329–341

    Article  CAS  PubMed  Google Scholar 

  6. Vadas O, Burke JE, Zhang X, Berndt A, Williams RL (2011) Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Sci Signal 4(195):re2

    Article  PubMed  CAS  Google Scholar 

  7. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC et al (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1(4):249–252

    Article  CAS  PubMed  Google Scholar 

  8. Fritsch R, de Krijger I, Fritsch K, George R, Reason B, Kumar MS et al (2013) RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell 153(5):1050–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, Bilancio A et al (2008) The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci U S A 105(24):8292–8297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ et al (2007) Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11(6):555–569

    Article  CAS  PubMed  Google Scholar 

  12. Hettinger K, Vikhanskaya F, Poh MK, Lee MK, de Belle I, Zhang JT et al (2007) c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ 14(2):218–229

    Article  CAS  PubMed  Google Scholar 

  13. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  CAS  PubMed  Google Scholar 

  14. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  CAS  PubMed  Google Scholar 

  16. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K et al (2010) Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 285(26):20109–20116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177–189

    Article  CAS  PubMed  Google Scholar 

  20. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Article  CAS  PubMed  Google Scholar 

  21. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915

    Article  CAS  PubMed  Google Scholar 

  22. Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P et al (2007) PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2(11):e1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316–323

    Article  CAS  PubMed  Google Scholar 

  24. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127(1):125–137

    Article  CAS  PubMed  Google Scholar 

  25. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol CB 14(14):1296–1302

    Article  CAS  PubMed  Google Scholar 

  26. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA et al (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol CB 16(18):1865–1870

    Article  CAS  PubMed  Google Scholar 

  27. Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M et al (2007) Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR (2011) Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 436:169–179

    Article  CAS  PubMed  Google Scholar 

  29. Greer EL, Brunet A (2008) FOXO transcription factors in ageing and cancer. Acta Physiol 192(1):19–28

    Article  CAS  Google Scholar 

  30. Eijkelenboom A, Mokry M, Smits LM, Nieuwenhuis EE, Burgering BM (2013) FOXO3 selectively amplifies enhancer activity to establish target gene regulation. Cell Rep 5(6):1664–1678

    Article  CAS  PubMed  Google Scholar 

  31. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  32. Kops GJ, Burgering BM (1999) Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. J Mol Med 77(9):656–665

    Article  CAS  PubMed  Google Scholar 

  33. Furuyama T, Nakazawa T, Nakano I, Mori N (2000) Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349(Pt 2):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1(2):140–152

    Article  CAS  PubMed  Google Scholar 

  35. Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV et al (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156(5):817–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rena G, Prescott AR, Guo SD, Cohen P, Unterman TG (2001) Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targeting. Biochem J 354:605–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121(1):115–125

    Article  CAS  PubMed  Google Scholar 

  38. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB et al (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125(5):987–1001

    Article  CAS  PubMed  Google Scholar 

  39. Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL et al (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23(24):4802–4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015

    Article  CAS  PubMed  Google Scholar 

  41. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X et al (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10(2):138–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27(16):2276–2288

    Article  CAS  PubMed  Google Scholar 

  43. Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20(2):126–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao JJ, Cheng H, Jia S, Wang L, Gjoerup OV, Mikami A et al (2006) The p110alpha isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation. Proc Natl Acad Sci U S A 103(44):16296–16300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marques M, Kumar A, Cortes I, Gonzalez-Garcia A, Hernandez C, Moreno-Ortiz MC et al (2008) Phosphoinositide 3-kinases p110 alpha and p110 beta regulate cell cycle entry, exhibiting distinct activation kinetics in G(1) phase. Mol Cell Biol 28(8):2803–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Utermark T, Rao T, Cheng H, Wang Q, Lee SH, Wang ZC et al (2012) The p110alpha and p110beta isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. Genes Dev 26(14):1573–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gritsman K, Yuzugullu H, Von T, Yan H, Clayton L, Fritsch C et al (2014) Hematopoiesis and RAS-driven myeloid leukemia differentially require PI3K isoform p110alpha. J Clin Invest 124(4):1794–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yuzugullu H, Baitsch L, Von T, Steiner A, Tong H, Ni J et al (2015) A PI3K p110beta-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis. Nat Commun 6:8501

    Article  CAS  PubMed  Google Scholar 

  49. Haneline LS, White H, Yang FC, Chen S, Orschell C, Kapur R et al (2006) Genetic reduction of class IA PI-3 kinase activity alters fetal hematopoiesis and competitive repopulating ability of hematopoietic stem cells in vivo. Blood 107(4):1375–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Munugalavadla V, Sims EC, Chan RJ, Lenz SD, Kapur R (2008) Requirement for p85alpha regulatory subunit of class IA PI3K in myeloproliferative disease driven by an activation loop mutant of KIT. Exp Hematol 36(3):301–308

    CAS  PubMed  Google Scholar 

  51. Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB et al (2006) Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 107(9):3463–3468

    Article  CAS  PubMed  Google Scholar 

  52. Cairoli R, Grillo G, Beghini A, Tedeschi A, Ripamonti CB, Larizza L et al (2003) C-Kit point mutations in core binding factor leukemias: correlation with white blood cell count and the white blood cell index. Leukemia 17(2):471–472

    Article  CAS  PubMed  Google Scholar 

  53. Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E et al (2000) C-kit mutations in core binding factor leukemias. Blood 95(2):726–727

    CAS  PubMed  Google Scholar 

  54. Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454(7205):776–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al (2003) Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 17(5):995–997

    Article  CAS  PubMed  Google Scholar 

  56. Gallay N, Dos Santos C, Cuzin L, Bousquet M, Simmonet Gouy V, Chaussade C et al (2009) The level of AKT phosphorylation on threonine 308 but not on serine 473 is associated with high-risk cytogenetics and predicts poor overall survival in acute myeloid leukaemia. Leukemia 23(6):1029–1038

    Article  CAS  PubMed  Google Scholar 

  57. Tamburini J, Elie C, Bardet V, Chapuis N, Park S, Broet P et al (2007) Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood 110(3):1025–1028

    Article  CAS  PubMed  Google Scholar 

  58. Kharas MG, Okabe R, Ganis JJ, Gozo M, Khandan T, Paktinat M et al (2010) Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115(7):1406–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115(20):4030–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100(4):387–390

    Article  PubMed  Google Scholar 

  61. Aggerholm A, Gronbaek K, Guldberg P, Hokland P (2000) Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. Eur J Haematol 65(2):109–113

    Article  CAS  PubMed  Google Scholar 

  62. Dahia PLM, Aguiar RCT, Alberta J, Kum JB, Caron S, Sill H et al (1999) PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet 8(2):185–193

    Article  CAS  PubMed  Google Scholar 

  63. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482

    Article  CAS  PubMed  Google Scholar 

  64. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441(7092):518–522

    Article  CAS  PubMed  Google Scholar 

  65. Fragoso R, Barata JT (2014) PTEN and leukemia stem cells. Adv Biol Regul 56:22–29

    Article  CAS  PubMed  Google Scholar 

  66. Guo W, Schubbert S, Chen JY, Valamehr B, Mosessian S, Shi H et al (2011) Suppression of leukemia development caused by PTEN loss. Proc Natl Acad Sci U S A 108(4):1409–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee JY, Nakada D, Yilmaz OH, Tothova Z, Joseph NM, Lim MS et al (2010) mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7(5):593–605

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Peng C, Chen Y, Yang Z, Zhang H, Osterby L, Rosmarin AG et al (2010) PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood 115(3):626–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li J, Zhang J, Tang MH, Xin JP, Xu Y, Volk A et al (2016) Hematopoietic stem cell activity is regulated by Pten phosphorylation through a niche-dependent mechanism. Stem Cells 34(8):2130–2144

    Article  CAS  PubMed  Google Scholar 

  70. Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM et al (1998) Targeted disruption of SHIP leads to hemopoietic perturbations lung pathology, and a shortened life span. Genes Dev 12(11):1610–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA et al (1999) BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 19(11):7473–7480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4(4):257–262

    Article  CAS  PubMed  Google Scholar 

  73. Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison SJ (2012) Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 11(3):415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kalaitzidis D, Sykes SM, Wang Z, Punt N, Tang Y, Ragu C et al (2012) mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked Leukemogenesis. Cell Stem Cell 11(3):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang W, Sun X, Hu T, Wang L, Dong S, Gu J et al (2018) PDK1 regulates definitive HSCs via the FOXO pathway during murine fetal liver hematopoiesis. Stem Cell Res 30:192–200

    Article  CAS  PubMed  Google Scholar 

  76. Hu T, Li C, Zhang Y, Wang L, Peng L, Cheng H et al (2015) Phosphoinositide-dependent kinase 1 regulates leukemia stem cell maintenance in MLL-AF9-induced murine acute myeloid leukemia. Biochem Biophys Res Commun 459(4):692–698

    Article  CAS  PubMed  Google Scholar 

  77. Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison SJ (2012) Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 11(3):415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guo F, Zhang S, Grogg M, Cancelas JA, Varney ME, Starczynowski DT et al (2013) Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis. Haematologica 98(9):1353–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205(10):2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hoshii T, Tadokoro Y, Naka K, Ooshio T, Muraguchi T, Sugiyama N et al (2012) mTORC1 is essential for leukemia propagation but not stem cell self-renewal. J Clin Invest 122(6):2114–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27(41):5527–5541

    Article  CAS  PubMed  Google Scholar 

  83. Peng H, Kasada A, Ueno M, Hoshii T, Tadokoro Y, Nomura N et al (2018) Distinct roles of Rheb and raptor in activating mTOR complex 1 for the self-renewal of hematopoietic stem cells. Biochem Biophys Res Commun 495(1):1129–1135

    Article  CAS  PubMed  Google Scholar 

  84. Altman JK, Sassano A, Kaur S, Glaser H, Kroczynska B, Redig AJ et al (2011) Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res 17(13):4378–4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ghosh J, Kapur R (2017) Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia. Exp Hematol 50:13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ghosh J, Kobayashi M, Ramdas B, Chatterjee A, Ma P, Mali RS et al (2016) S6K1 regulates hematopoietic stem cell self-renewal and leukemia maintenance. J Clin Invest 126(7):2621–2625

    Article  PubMed  PubMed Central  Google Scholar 

  87. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1(1):101–112

    Article  CAS  PubMed  Google Scholar 

  88. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339

    Article  CAS  PubMed  Google Scholar 

  89. Yalcin S, Marinkovic D, Mungamuri SK, Zhang X, Tong W, Sellers R et al (2010) ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3(−/−) mice. EMBO J 29(24):4118–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rimmele P, Liang R, Bigarella CL, Kocabas F, Xie J, Serasinghe MN et al (2015) Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep 16(9):1164–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liang R, Rimmele P, Bigarella CL, Yalcin S, Ghaffari S (2016) Evidence for AKT-independent regulation of FOXO1 and FOXO3 in haematopoietic stem and progenitor cells. Cell Cycle 15(6):861–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miyamoto K, Miyamoto T, Kato R, Yoshimura A, Motoyama N, Suda T (2008) FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood 112(12):4485–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Santamaria CM, Chillon MC, Garcia-Sanz R, Perez C, Caballero MD, Ramos F et al (2009) High FOXO3a expression is associated with a poorer prognosis in AML with normal cytogenetics. Leuk Res 33(12):1706–1709

    Article  CAS  PubMed  Google Scholar 

  94. Kornblau SM, Singh N, Qiu YH, Chen WJ, Zhang NX, Coombes KR (2010) Highly phosphorylated FOXO3A is an adverse prognostic factor in acute myeloid leukemia. Clin Cancer Res 16(6):1865–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chapuis N, Park S, Leotoing L, Tamburini J, Verdier F, Bardet V et al (2010) I kappa B kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a activity in acute myeloid leukemia. Blood 116(20):4240–4250

    Article  CAS  PubMed  Google Scholar 

  96. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463(7281):676–U111

    Article  CAS  PubMed  Google Scholar 

  97. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B et al (2011) AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 146(5):697–708

    Article  CAS  PubMed  Google Scholar 

  98. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I et al (2018) An ERK-dependent feedback mechanism prevents hematopoietic stem cell exhaustion. Cell Stem Cell 22(6):879–92 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xue L, Pulikkan JA, Valk PJM, Castilla LH (2014) NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfbeta-SMMHC via activation of MEK/ERK axis. Blood 124(3):426–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang J, Kong G, Liu Y, Du J, Chang Y-I, Tey SR et al (2013) Nras(G12D/+) promotes leukemogenesis by aberrantly regulating hematopoietic stem cell functions. Blood 121(26):5203–5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nowacka JD, Baumgartner C, Pelorosso C, Roth M, Zuber J, Baccarini M (2016) MEK1 is required for the development of NRAS-driven leukemia. Oncotarget 7(49):80113–80130

    Article  PubMed  PubMed Central  Google Scholar 

  102. Li Q, Bohin N, Wen T, Ng V, Magee J, Chen SC et al (2013) Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness. Nature 504(7478):143–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414

    Article  CAS  PubMed  Google Scholar 

  104. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM et al (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2(3):274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Staal FJ, Famili F, Garcia Perez L, Pike-Overzet K (2016) Aberrant Wnt signaling in leukemia. Cancers (Basel) 8(9):78

    Article  CAS  Google Scholar 

  106. Cobas M, Wilson A, Ernst B, Mancini SJ, MacDonald HR, Kemler R et al (2004) Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 199(2):221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kabiri Z, Numata A, Kawasaki A, Edison TDG, Virshup DM (2015) Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells. Blood 126(9):1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ (2012) Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26(3):414–421

    Article  CAS  PubMed  Google Scholar 

  109. Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M et al (2011) Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 9(4):345–356

    Article  CAS  PubMed  Google Scholar 

  110. Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C (2006) Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 7(10):1048–1056

    Article  CAS  PubMed  Google Scholar 

  111. Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG et al (2006) Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol 7(10):1037–1047

    Article  CAS  PubMed  Google Scholar 

  112. Perry JM, He XC, Sugimura R, Grindley JC, Haug JS, Ding S et al (2011) Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev 25(18):1928–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351(7):657–667

    Article  CAS  PubMed  Google Scholar 

  114. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al (2007) Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12(6):528–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hu Y, Chen Y, Douglas L, Li S (2009) Beta-catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 23(1):109–116

    Article  CAS  PubMed  Google Scholar 

  116. Hu J, Feng M, Liu ZL, Liu Y, Huang ZL, Li H et al (2016) Potential role of Wnt/beta-catenin signaling in blastic transformation of chronic myeloid leukemia: cross talk between beta-catenin and BCR-ABL. Tumour Biol 37:15859–15872

    Article  CAS  Google Scholar 

  117. Eiring AM, Khorashad JS, Anderson DJ, Yu F, Redwine HM, Mason CC et al (2015) Beta-catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Leukemia 29(12):2328–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu S, Li F, Xing S, Zhao T, Peng W, Xue HH (2016) Hematopoietic and leukemic stem cells have distinct dependence on Tcf1 and Lef1 transcription factors. J Biol Chem 291(21):11148–11160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z et al (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D et al (2010) Beta-catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 18(6):606–618

    Article  CAS  PubMed  Google Scholar 

  121. Dietrich PA, Yang C, Leung HH, Lynch JR, Gonzales E, Liu B et al (2014) GPR84 sustains aberrant beta-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis. Blood 124(22):3284–3294

    Article  CAS  PubMed  Google Scholar 

  122. Jiang X, Mak PY, Mu H, Tao W, Mak DH, Kornblau S et al (2018) Disruption of Wnt/beta-catenin exerts Antileukemia activity and synergizes with FLT3 inhibition in FLT3-mutant acute myeloid leukemia. Clin Cancer Res 24(10):2417–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4(2):68–75

    Article  PubMed  PubMed Central  Google Scholar 

  124. Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM (2007) Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci U S A 104(39):15436–15441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A et al (2003) Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4(5):349–360

    Article  CAS  PubMed  Google Scholar 

  126. Martin V, Valencia A, Agirre X, Cervera J, San Jose-Eneriz E, Vilas-Zornoza A, Rodriguez-Otero P, Sanz MA, Herrera C, Torres A, Prosper F, Roman-Gomez J (2010) Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci 101(2):425–32

    Article  PubMed  CAS  Google Scholar 

  127. Schreck C, Istvanffy R, Ziegenhain C, Sippenauer T, Ruf F, Henkel L et al (2017) Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells. J Exp Med 214(1):165–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chattopadhyay S, Chaklader M, Law S (2018) Aberrant Wnt signaling pathway in the hematopoietic stem/progenitor compartment in experimental leukemic animal. J Cell Commun Signal 13(1):39–52

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pajcini KV, Speck NA, Pear WS (2011) Notch signaling in mammalian hematopoietic stem cells. Leukemia 25(10):1525–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6(11):1278–1281

    Article  CAS  PubMed  Google Scholar 

  131. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT (2002) Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99(7):2369–2378

    Article  CAS  PubMed  Google Scholar 

  132. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al (2000) The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 192(9):1365–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Karanu FN, Murdoch B, Miyabayashi T, Ohno M, Koremoto M, Gallacher L et al (2001) Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood 97(7):1960–1967

    Article  CAS  PubMed  Google Scholar 

  134. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6(3):314–322

    Article  CAS  PubMed  Google Scholar 

  135. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al (1999) Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10(5):547–558

    Article  CAS  PubMed  Google Scholar 

  136. Varnum-Finney B, Halasz LM, Sun M, Gridley T, Radtke F, Bernstein ID (2011) Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J Clin Invest 121(3):1207–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    Article  CAS  PubMed  Google Scholar 

  138. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT et al (2010) Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell 6(3):251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lobry C, Oh P, Mansour MR, Look AT, Aifantis I (2014) Notch signaling: switching an oncogene to a tumor suppressor. Blood 123(16):2451–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen PM, Yen CC, Wang WS, Lin YJ, Chu CJ, Chiou TJ et al (2008) Down-regulation of Notch-1 expression decreases PU.1-mediated myeloid differentiation signaling in acute myeloid leukemia. Int J Oncol 32(6):1335–1341

    CAS  PubMed  Google Scholar 

  141. Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S et al (2011) A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473(7346):230–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lobry C, Ntziachristos P, Ndiaye-Lobry D, Oh P, Cimmino L, Zhu N et al (2013) Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J Exp Med 210(2):301–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kannan S, Sutphin RM, Hall MG, Golfman LS, Fang W, Nolo RM et al (2013) Notch activation inhibits AML growth and survival: a potential therapeutic approach. J Exp Med 210(2):321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kato T, Sakata-Yanagimoto M, Nishikii H, Ueno M, Miyake Y, Yokoyama Y et al (2015) Hes1 suppresses acute myeloid leukemia development through FLT3 repression. Leukemia 29(3):576–585

    Article  CAS  PubMed  Google Scholar 

  145. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N et al (2014) Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 506(7487):240–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nakahara F, Sakata-Yanagimoto M, Komeno Y, Kato N, Uchida T, Haraguchi K et al (2010) Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood 115(14):2872–2881

    Article  CAS  PubMed  Google Scholar 

  147. Liu X, Ma Y, Li R, Guo D, Wang N, Zhao Y et al (2018) Niche TWIST1 is critical for maintaining normal hematopoiesis and impeding leukemia progression. Haematologica 103(12):1969–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yin DD, Fan FY, Hu XB, Hou LH, Zhang XP, Liu L et al (2009) Notch signaling inhibits the growth of the human chronic myeloid leukemia cell line K562. Leuk Res 33(1):109–114

    Article  CAS  PubMed  Google Scholar 

  149. Bowers M, Zhang B, Ho Y, Agarwal P, Chen CC, Bhatia R (2015) Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood 125(17):2678–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vaidya A, Kale VP (2015) TGF-beta signaling and its role in the regulation of hematopoietic stem cells. Syst Synth Biol 9(1–2):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ruscetti FW, Akel S, Bartelmez SH (2005) Autocrine transforming growth factor-beta regulation of hematopoiesis: many outcomes that depend on the context. Oncogene 24(37):5751–5763

    Article  CAS  PubMed  Google Scholar 

  152. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC et al (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20(11):1321–1326

    Article  CAS  PubMed  Google Scholar 

  153. Karlsson G, Blank U, Moody JL, Ehinger M, Singbrant S, Deng CX et al (2007) Smad4 is critical for self-renewal of hematopoietic stem cells. J Exp Med 204(3):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sing GK, Keller JR, Ellingsworth LR, Ruscetti FW (1988) Transforming growth factor beta selectively inhibits normal and leukemic human bone marrow cell growth in vitro. Blood 72(5):1504–1511

    CAS  PubMed  Google Scholar 

  155. Keller JR, McNiece IK, Sill KT, Ellingsworth LR, Quesenberry PJ, Sing GK et al (1990) Transforming growth factor beta directly regulates primitive murine hematopoietic cell proliferation. Blood 75(3):596–602

    CAS  PubMed  Google Scholar 

  156. Sitnicka E, Ruscetti FW, Priestley GV, Wolf NS, Bartelmez SH (1996) Transforming growth factor beta 1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells. Blood 88(1):82–88

    CAS  PubMed  Google Scholar 

  157. Soma T, Yu JM, Dunbar CE (1996) Maintenance of murine long-term repopulating stem cells in ex vivo culture is affected by modulation of transforming growth factor-beta but not macrophage inflammatory protein-1 alpha activities. Blood 87(11):4561–4567

    CAS  PubMed  Google Scholar 

  158. Fortunel N, Batard P, Hatzfeld A, Monier MN, Panterne B, Lebkowski J et al (1998) High proliferative potential-quiescent cells: a working model to study primitive quiescent hematopoietic cells. J Cell Sci 111(Pt 13):1867–1875

    CAS  PubMed  Google Scholar 

  159. Letterio JJ, Geiser AG, Kulkarni AB, Dang H, Kong L, Nakabayashi T et al (1996) Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression. J Clin Invest 98(9):2109–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90(2):770–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Oshima M, Oshima H, Taketo MM (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179(1):297–302

    Article  CAS  PubMed  Google Scholar 

  162. Larsson J, Blank U, Helgadottir H, Bjornsson JM, Ehinger M, Goumans MJ et al (2003) TGF-beta signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood 102(9):3129–3135

    Article  CAS  PubMed  Google Scholar 

  163. Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113(6):1250–1256

    Article  CAS  PubMed  Google Scholar 

  164. Blank U, Karlsson G, Moody JL, Utsugisawa T, Magnusson M, Singbrant S et al (2006) Smad7 promotes self-renewal of hematopoietic stem cells. Blood 108(13):4246–4254

    Article  CAS  PubMed  Google Scholar 

  165. Scandura JM, Boccuni P, Massague J, Nimer SD (2004) Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci U S A 101(42):15231–15236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, Tateishi Y et al (2011) p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 9(3):262–271

    Article  CAS  PubMed  Google Scholar 

  167. Park SM, Deering RP, Lu Y, Tivnan P, Lianoglou S, Al-Shahrour F et al (2014) Musashi-2 controls cell fate, lineage bias, and TGF-beta signaling in HSCs. J Exp Med 211(1):71–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Brenet F, Kermani P, Spektor R, Rafii S, Scandura JM (2013) TGFbeta restores hematopoietic homeostasis after myelosuppressive chemotherapy. J Exp Med 210(3):623–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jiang L, Han X, Wang J, Wang C, Sun X, Xie J et al (2018) SHP-1 regulates hematopoietic stem cell quiescence by coordinating TGF-beta signaling. J Exp Med 215(5):1337–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jonuleit T, van der Kuip H, Miething C, Michels H, Hallek M, Duyster J et al (2000) Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood 96(5):1933–1939

    CAS  PubMed  Google Scholar 

  171. Passegue E, Jochum W, Schorpp-Kistner M, Mohle-Steinlein U, Wagner EF (2001) Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell 104(1):21–32

    Article  CAS  PubMed  Google Scholar 

  172. Passegue E, Wagner EF, Weissman IL (2004) JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119(3):431–443

    Article  CAS  PubMed  Google Scholar 

  173. Santaguida M, Schepers K, King B, Sabnis AJ, Forsberg EC, Attema JL et al (2009) JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15(4):341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Quere R, Karlsson G, Hertwig F, Rissler M, Lindqvist B, Fioretos T et al (2011) Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation. Blood 117(22):5918–5930

    Article  CAS  PubMed  Google Scholar 

  175. Smith PG, Tanaka H, Chantry A (2012) A novel co-operative mechanism linking TGFbeta and Lyn kinase activation to imatinib resistance in chronic myeloid leukaemia cells. Oncotarget 3(5):518–524

    PubMed  PubMed Central  Google Scholar 

  176. Tabe Y, Shi YX, Zeng Z, Jin L, Shikami M, Hatanaka Y et al (2013) TGF-beta-neutralizing antibody 1D11 enhances cytarabine-induced apoptosis in AML cells in the bone marrow microenvironment. PLoS One 8(6):e62785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wu Y, Su M, Zhang S, Cheng Y, Liao XY, Lin BY et al (2017) Abnormal expression of TGF-beta type II receptor isoforms contributes to acute myeloid leukemia. Oncotarget 8(6):10037–10049

    PubMed  Google Scholar 

  178. Gilliland DG (2002) Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 39(4 Suppl 3):6–11

    Article  CAS  PubMed  Google Scholar 

  179. Huntly BJ, Gilliland DG (2004) Blasts from the past: new lessons in stem cell biology from chronic myelogenous leukemia. Cancer Cell 6(3):199–201

    Article  CAS  PubMed  Google Scholar 

  180. Cabezas-Wallscheid N, Eichwald V, de Graaf J, Lower M, Lehr HA, Kreft A et al (2013) Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mouse model. EMBO Mol Med 5(12):1804–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al (1999) The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 23(2):144–146

    Article  CAS  PubMed  Google Scholar 

  182. Chen SJ, Shen Y, Chen Z (2013) A panoramic view of acute myeloid leukemia. Nat Genet 45(6):586–587

    Article  CAS  PubMed  Google Scholar 

  183. Spangle JM, Roberts TM, Zhao JJ (2017) The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim Biophys Acta Rev Cancer 1868(1):123–131

    Article  CAS  PubMed  Google Scholar 

  184. Cornejo MG, Mabialah V, Sykes SM, Khandan T, Lo Celso C, Lopez CK et al (2011) Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification. Blood 118(5):1264–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H et al (2007) Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282(15):11221–11229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the Gritsman lab for helpful discussions. We apologize to any authors whose work was not cited due to space limitations. This work was supported by the NIH/NCI R01 #R01CA196973 (KG), the American Society of Hematology (KG), the V Foundation for Cancer Research (KG), the Sinsheimer Foundation (KG), the Training Program in Cellular and Molecular Biology and Genetics at Albert Einstein College of Medicine #5T32GM007491-44 (LG), and the IRACDA-BETTR Postdoctoral Training Grant at Albert Einstein College of Medicine #2K12GM102779 (KA).

Conflicts of Interest

The authors declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kira Gritsman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurska, L.M., Ames, K., Gritsman, K. (2019). Signaling Pathways in Leukemic Stem Cells. In: Zhang, H., Li, S. (eds) Leukemia Stem Cells in Hematologic Malignancies. Advances in Experimental Medicine and Biology, vol 1143. Springer, Singapore. https://doi.org/10.1007/978-981-13-7342-8_1

Download citation

Publish with us

Policies and ethics