Skip to main content

Nitrogen-Cycling Communities in Organically Amended Versus Conventionally Managed Agricultural Soil

  • Chapter
  • First Online:
Carbon and Nitrogen Cycling in Soil

Abstract

Productivity in agricultural ecosystems is often largely dependent on the input of nitrogen fertilizers such as urea, nitrate, and ammonia, despite the high financial costs and potential detrimental effects on the environment. Soil enrichment with organic matter, such as plant compost, straw, or manure, can enhance soil organic carbon and improve soil quality and increase aggregate stability, biological activity, and microbial diversity, including nitrogen cycles. The abundance of the nifH gene, thus nitrogen cycles, was found to be enhanced when organic fertilization was used and correlated mainly to the availability of organic carbon, potentially due to the presence of fuels required to run the energetically expensive nitrogen fixation process. On the other hand, readily available ammonia and nitrate, which are often associated with inorganic fertilization, tend to suppress the soil potential for nitrogen fixation. The impacts of fertilizers on denitrifying microbial communities are complex, due to the great diversity of the denitrifiers and the variation in their abundance in different environments. However, in general, the use of organic fertilizers increases denitrification potential and activity in soils when compared to inorganic fertilization. This is particularly important for increasing the abundance of those denitrifiers containing the nosZ genes and capable of the final step of the denitrification process, removing the potent greenhouse gas nitrous oxide by its conversion to dinitrogen. Bacterial and archaeal nitrifiers react differently to variations in soil conditions and to different fertilization management strategies. It is important to note that nitrogen fertilizers in access might turn into an ecosystem hazard where nitrifying microbes convert them to nitrate. This survey of the literature suggests that the addition of organic matter to agricultural soils, even where inorganic nitrogen fertilizers are used, enhances the soil potential for nitrogen cycling and soil sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

amoA :

Gene encoding the monooxygenase enzyme

amoA-arch:

Archaeal amoA gene

amoA-B:

Bacterial amoA gene

AOA:

Ammonia-oxidizing archaea

AOB:

Ammonia-oxidizing bacteria

ATP:

Adenosine triphosphate

Av N:

Available nitrogen (Kjeldahl method)

C:

Carbon

CO2 :

Carbon dioxide

DMPP:

3,4-Dimethylpyrazole phosphate

IF:

Inorganic fertilization

N:

Nitrogen

N2 :

Dinitrogen gas

N2O:

Nitrous oxide

NH3 :

Ammonia

NH4 + :

Ammonium ion

nifH :

Gene encoding the dinitrogenase reductase enzyme

nirK :

Gene encoding the copper-containing nitrite reductase enzyme

NirK:

Copper-containing nitrite reductase

nirS :

Gene encoding the cytochrome cd1 nitrite reductase enzyme

NirS:

Cytochrome cd1 nitrite reductase

NO:

Nitric oxide

NO2 :

Nitrite

NO3 :

Nitrate

References

  • Alef K, Beck T, Zelles L, Kleiner D (1988) A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol Biochem 20(4):561–565

    Article  CAS  Google Scholar 

  • Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Glob Biogeochem Cycles 19(1):1

    Article  CAS  Google Scholar 

  • Barrett JE, Burke IC (2000) Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biol Biochem 32(11–12):1707–1716

    Article  CAS  Google Scholar 

  • Bastian F, Bouziri L, Nicolardot B, Ranjard L (2009) Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem 41(2):262–275

    Article  CAS  Google Scholar 

  • Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma 147(3–4):159–171

    Article  CAS  Google Scholar 

  • Bastida F, Torres IF, Romero-Trigueros C, Baldrian P, Větrovský T, Bayona JM, Alarcón JJ, Hernández T, García C, Nicolás E (2017) Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions. Soil Biol Biochem 104:226–237

    Article  CAS  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2010) Examining the global distribution of dominant archaeal populations in soil. ISME J 5(5):908–917

    Article  CAS  Google Scholar 

  • Bedmar EJ, Robles EF, Delgado MJ (2005) The complete denitrification pathway of the symbiotic, nitrogen-fixing bacteriumBradyrhizobium japonicum. Biochem Soc Trans 33(1):141–144

    Article  CAS  Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437(7056):245–248

    Article  CAS  Google Scholar 

  • Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Ecological studies. Springer, Berlin Heidelberg

    Google Scholar 

  • Bengtsson G, Bengtson P, Månsson KF (2003) Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol Biochem 35(1):143–154

    Article  CAS  Google Scholar 

  • Bergkvist P, Jarvis N, Berggren D, Carlgren K (2003) Long-term effects of sewage sludge applications on soil properties, cadmium availability and distribution in arable soil. Agric Ecosyst Environ 97(1–3):167–179

    Article  CAS  Google Scholar 

  • Berry D (1978) Effects of urbanization on agricultural activities. Growth Chang 9(3):2–8

    Article  Google Scholar 

  • Bisseling T, Van Den Bos RC, Van Kammen A (1978) The effect of ammonium nitrate on the synthesis of nitrogenase and the concentration of leghemoglobin in pea root nodules induced by rhizobium leguminosarum. Biochim Biophys Acta Gen Subj 539(1):1–11

    Article  CAS  Google Scholar 

  • Bissett A, Richardson AE, Baker G, Thrall PH (2011) Long-term land use effects on soil microbial community structure and function. Appl Soil Ecol 51:66–78

    Article  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36(1):1–12

    Article  CAS  Google Scholar 

  • Bothe H, Jost G, Schloter M, Ward BB, Witzel K-P (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24(5):673–690

    Article  CAS  Google Scholar 

  • Braker G, Conrad R (2011) Diversity, structure, and size of N2O-producing microbial communities in soils–what matters for their functioning? In: Advances in applied microbiology. Elsevier, San Diego

    Google Scholar 

  • Braker G, Fesefeldt A, Witzel K-P (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64(10):3769–3775

    CAS  Google Scholar 

  • Bremer C, Braker G, Matthies D, Reuter A, Engels C, Conrad R (2007) Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl Environ Microbiol 73(21):6876–6884

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil Trans R Soc B 368(1621):20130122–20130122

    Article  CAS  Google Scholar 

  • Canarini A, Carrillo Y, Mariotte P, Ingram L, Dijkstra FA (2016) Soil microbial community resistance to drought and links to C stabilization in an Australian grassland. Soil Biol Biochem 103:171–180

    Article  CAS  Google Scholar 

  • Caravaca F, Masciandaro G, Ceccanti B (2002) Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Tillage Res 68(1):23–30

    Article  Google Scholar 

  • Castañeda LE, Godoy K, Manzano M, Marquet PA, Barbosa O (2015) Comparison of soil microbial communities inhabiting vineyards and native sclerophyllous forests in Central Chile. Ecol Evol 5(18):3857–3868

    Article  Google Scholar 

  • Cavagnaro TR, Jackson LE, Hristova K, Scow KM (2008) Short-term population dynamics of ammonia oxidizing bacteria in an agricultural soil. Appl Soil Ecol 40(1):13–18

    Article  Google Scholar 

  • Chan Y-K, Barraquio WL, Knowles R (1994) N2-fixing pseudomonads and related soil bacteria. FEMS Microbiol Rev 13(1):95–117

    Article  CAS  Google Scholar 

  • Clark IM, Buchkina N, Jhurreea D, Goulding KWT, Hirsch PR (2012) Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk wheat experiment. Phil Trans R Soc B 367(1593):1235–1244

    Article  CAS  Google Scholar 

  • Coelho MRR, Marriel IE, Jenkins SN, Lanyon CV, Seldin L, O’Donnell AG (2009) Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl Soil Ecol 42(1):48–53

    Article  Google Scholar 

  • Colloff MJ, Wakelin SA, Gomez D, Rogers SL (2008) Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management. Soil Biol Biochem 40(7):1637–1645

    Article  CAS  Google Scholar 

  • Dandie CE, Wertz S, Leclair CL, Goyer C, Burton DL, Patten CL, Zebarth BJ, Trevors JT (2011) Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol Ecol 77(1):69–82

    Article  CAS  Google Scholar 

  • Danneberg G, Kronenberg A, Neuer G, Bothe H (1986) Aspects of nitrogen fixation and denitrification byAzospirillum. Plant Soil 90(1–3):193–202

    Article  CAS  Google Scholar 

  • de Vries FT, Thebault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjornlund L, Bracht Jorgensen H, Brady MV, Christensen S, de Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Hol WHG, Hotes S, Mortimer SR, Setala H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci 110(35):14296–14301

    Article  Google Scholar 

  • Deslippe JR, Jamali H, Jha N, Saggar S (2014) Denitrifier community size, structure and activity along a gradient of pasture to riparian soils. Soil Biol Biochem 71:48–60

    Article  CAS  Google Scholar 

  • Desnues C, Michotey VD, Wieland A, Zhizang C, Fourçans A, Duran R, Bonin PC (2007) Seasonal and diel distributions of denitrifying and bacterial communities in a hypersaline microbial mat (Camargue, France). Water Res 41(15):3407–3419

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2(9):621–624

    Article  CAS  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2(8):621–631

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103(3):626–631

    Article  CAS  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6(5):1007–1017

    Article  CAS  Google Scholar 

  • Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19(3):369–377

    Article  Google Scholar 

  • Frenk S, Hadar Y, Minz D (2014) Resilience of soil bacterial community to irrigation with water of different qualities under Mediterranean climate. Environ Microbiol 16(2):559–569

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  CAS  Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302(1–2):19–32

    Article  CAS  Google Scholar 

  • García-Orenes F, Guerrero C, Roldán A, Mataix-Solera J, Cerdà A, Campoy M, Zornoza R, Bárcenas G, Caravaca F (2010) Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil Tillage Res 109(2):110–115

    Article  Google Scholar 

  • García-Orenes F, Morugán-Coronado A, Zornoza R, Scow K (2013) Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem. PLoS One 8(11):e80522

    Article  CAS  Google Scholar 

  • García-Orenes F, Roldán A, Morugán-Coronado A, Linares C, Cerdà A, Caravaca F (2016) Organic fertilization in traditional mediterranean grapevine orchards mediates changes in soil microbial community structure and enhances soil fertility. Land Degrad Dev 27(6):1622–1628

    Article  Google Scholar 

  • Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms – a review. Soil Biol Biochem 75:54–63

    Article  CAS  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms – a review. Soil Biol Biochem 42(12):2058–2067

    Article  CAS  Google Scholar 

  • Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13(6):1642–1654

    Article  Google Scholar 

  • Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74(3):566–574

    Article  CAS  Google Scholar 

  • Hai B, Diallo NH, Sall S, Haesler F, Schauss K, Bonzi M, Assigbetse K, Chotte JL, Munch JC, Schloter M (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75(15):4993–5000

    Article  CAS  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3(5):597–605

    Article  CAS  Google Scholar 

  • Hart MJ, Eva A, Zangrilli D, Aaronson SA, Evans T, Cerione RA, Zheng Y (1994) Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem 269(1):62–65

    CAS  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9(5):1177–1194

    Article  Google Scholar 

  • Hayden HL, Drake J, Imhof M, Oxley APA, Norng S, Mele PM (2010) The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in south-eastern Australia. Soil Biol Biochem 42(10):1774–1783

    Article  CAS  Google Scholar 

  • He J-z, Shen J-p, L-m Z, Zhu Y-g, Zheng Y-m, Xu M-g, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9(9):2364–2374

    Article  CAS  Google Scholar 

  • He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL, Li X, Wu L, Gentry TJ, Yin Y, Liebich J, Hazen TC, Zhou J (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4(9):1167–1179

    Article  CAS  Google Scholar 

  • Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59(3):327–335

    Article  CAS  Google Scholar 

  • Hirsch PR, Mauchline TH (2015) The importance of the microbial N cycle in soil for crop plant nutrition. In: Advances in applied microbiology. Elsevier

    Google Scholar 

  • Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci 101(42):15136–15141

    Article  CAS  Google Scholar 

  • Houlton BZ, Bai E (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc Natl Acad Sci 106(51):21713–21716

    Article  CAS  Google Scholar 

  • Huang Y (2004) Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biol Biochem 36(6):973–981

    Article  CAS  Google Scholar 

  • Imfeld G, Vuilleumier S (2012) Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur J Soil Biol 49:22–30

    Article  CAS  Google Scholar 

  • Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40(11):2843–2853

    Article  CAS  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteriarather thanArchaeadominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11(7):1658–1671

    Article  CAS  Google Scholar 

  • Johnston AE, Poulton PR, Coleman K (2009) Chapter 1 soil organic matter. In: Advances in agronomy. Elsevier

    Google Scholar 

  • Jones CM, Stres B, Rosenquist M, Hallin S (2008) Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol 25(9):1955–1966

    Article  CAS  Google Scholar 

  • Jones CM, Graf DRH, Bru D, Philippot L, Hallin S (2013) The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7(2):417–426

    Article  CAS  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Phil Trans R Soc B 363(1492):685–701

    Article  CAS  Google Scholar 

  • Kim SW, Fushinobu S, Zhou S, Wakagi T, Shoun H (2009) Eukaryotic nirK genes encoding copper-containing nitrite reductase: originating from the protomitochondrion? Appl Environ Microbiol 75(9):2652–2658

    Article  CAS  Google Scholar 

  • Kleineidam K, Košmrlj K, Kublik S, Palmer I, Pfab H, Ruser R, Fiedler S, Schloter M (2011) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere 84(1):182–186

    Article  CAS  Google Scholar 

  • Knapp CW, Dodds WK, Wilson KC, O’Brien JM, Graham DW (2009) Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. Environ Sci Technol 43(12):4273–4279

    Article  CAS  Google Scholar 

  • Koper TE, El-Sheikh AF, Norton JM, Klotz MG (2004) Urease-encoding genes in ammonia-oxidizing bacteria. Appl Environ Microbiol 70(4):2342–2348

    Article  CAS  Google Scholar 

  • Ladha JK, Pathak H, Krupnik TJ, Six J, van Kessel C (2005) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. In: Advances in agronomy. Elsevier

    Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809

    Article  CAS  Google Scholar 

  • Li J, Deng J, Gu Q, Wang K, Ye F, Xu Z, Jin S (2015) The accelerated urbanization process: a threat to soil resources in eastern China. Sustainability 7(6):7137–7155

    Article  Google Scholar 

  • Liu X, Tiquia SM, Holguin G, Wu L, Nold SC, Devol AH, Luo K, Palumbo AV, Tiedje JM, Zhou J (2003) Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the pacific coast of Mexico. Appl Environ Microbiol 69(6):3549–3560

    Article  CAS  Google Scholar 

  • Lori M, Symanczik S, Mäder P, Efosa N, Jaenicke S, Buegger F, Tresch S, Goesmann A, Gattinger A (2018) Distinct nitrogen provisioning from organic amendments in soil as influenced by farming system and water regime. Front Environ Sci 6

    Google Scholar 

  • Macci C, Doni S, Peruzzi E, Mennone C, Masciandaro G (2013) Biostimulation of soil microbial activity through organic fertilizer and almond tree association. Land Degrad Dev 27(2):335–345

    Article  Google Scholar 

  • Maeda K, Hanajima D, Toyoda S, Yoshida N, Morioka R, Osada T (2011) Microbiology of nitrogen cycle in animal manure compost. Microb Biotechnol 4(6):700–709

    Article  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461(7266):976–979

    Article  CAS  Google Scholar 

  • Meng H, Wu R, Wang Y-F, Gu J-D (2017) A comparison of denitrifying bacterial community structures and abundance in acidic soils between natural forest and re-vegetated forest of Nanling nature reserve in southern China. J Environ Manag 198:41–49

    Article  CAS  Google Scholar 

  • Menneer JC, Ledgard S, McLay C, Silvester W (2004) The impact of grazing animals on N2 fixation in legume-based pastures and management options for improvement. In: Advances in agronomy. Elsevier

    Google Scholar 

  • Miller MN, Zebarth BJ, Dandie CE, Burton DL, Goyer C, Trevors JT (2008) Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol Biochem 40(10):2553–2562

    Article  CAS  Google Scholar 

  • Morales SE, Cosart T, Holben WE (2010) Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME J 4(6):799–808

    Article  CAS  Google Scholar 

  • Morugán-Coronado A, García-Orenes F, Cerdà A (2015) Changes in soil microbial activity and physicochemical properties in agricultural soils in eastern Spain. Span J Soil Sci 5(3):201

    Google Scholar 

  • Newman L, Powell LJ, Wittman H (2015) Landscapes of food production in agriburbia: farmland protection and local food movements in British Columbia. J Rural Stud 39:99–110

    Article  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10(11):2966–2978

    Article  CAS  Google Scholar 

  • Nogales B, Timmis KN, Nedwell DB, Osborn AM (2002) Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl Environ Microbiol 68(10):5017–5025

    Article  CAS  Google Scholar 

  • Noll M, Wellinger M (2008) Changes of the soil ecosystem along a receding glacier: testing the correlation between environmental factors and bacterial community structure. Soil Biol Biochem 40(10):2611–2619

    Article  CAS  Google Scholar 

  • Oakley BB, Francis CA, Roberts KJ, Fuchsman CA, Srinivasan S, Staley JT (2007) Analysis of nitrite reductase (nirK and nirS) genes and cultivation reveal depauperate community of denitrifying bacteria in the Black Sea suboxic zone. Environ Microbiol 9(1):118–130

    Article  CAS  Google Scholar 

  • Ogilvie LA, Hirsch PR, Johnston AWB (2008) Bacterial diversity of the broadbalk ‘classical’ winter wheat experiment in relation to long-term fertilizer inputs. Microb Ecol 56(3):525–537

    Article  Google Scholar 

  • Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70(2):1008–1016

    Article  CAS  Google Scholar 

  • Orr CH, Stewart CJ, Leifert C, Cooper JM, Cummings SP (2015) Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems. J Appl Microbiol 119(1):208–214

    Article  CAS  Google Scholar 

  • Pereg L, Morugán-Coronado A, McMillan M, García-Orenes F (2018) Restoration of nitrogen cycling community in grapevine soil by a decade of organic fertilization. Soil Tillage Res 179:11–19

    Article  Google Scholar 

  • Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38(3):460–470

    Article  CAS  Google Scholar 

  • Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14(4):993–1008

    Article  CAS  Google Scholar 

  • Philippot L (2006) Use of functional genes to quantify denitrifiers in the environment: figure 1. Biochem Soc Trans 34(1):101–103

    Article  CAS  Google Scholar 

  • Philippot L, Hallin S, Schloter M (2007) Ecology of denitrifying prokaryotes in agricultural soil. In: Advances in agronomy. Elsevier

    Google Scholar 

  • Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci 108(10):4170–4175

    Article  CAS  Google Scholar 

  • Prieme A, Braker G, Tiedje JM (2002) Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Appl Environ Microbiol 68(4):1893–1900

    Article  CAS  Google Scholar 

  • Prosdocimi M, Jordán A, Tarolli P, Keesstra S, Novara A, Cerdà A (2016) The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci Total Environ 547:323–330

    Article  CAS  Google Scholar 

  • Quadros PD, Zhalnina K, Davis-Richardson A, Fagen JR, Drew J, Bayer C, Camargo FAO, Triplett EW (2012) The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical acrisol. Diversity 4(4):375–395

    Article  CAS  Google Scholar 

  • Rasche F, Knapp D, Kaiser C, Koranda M, Kitzler B, Zechmeister-Boltenstern S, Richter A, Sessitsch A (2010) Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5(3):389–402

    Article  CAS  Google Scholar 

  • Reed SC, Seastedt TR, Mann CM, Suding KN, Townsend AR, Cherwin KL (2007) Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. Appl Soil Ecol 36(2–3):238–242

    Article  Google Scholar 

  • Reeve JR, Schadt CW, Carpenter-Boggs L, Kang S, Zhou J, Reganold JP (2010) Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J 4(9):1099–1107

    Article  Google Scholar 

  • Saleh-Lakha S, Miller M, Campbell RG, Schneider K, Elahimanesh P, Hart MM, Trevors JT (2005) Microbial gene expression in soil: methods, applications and challenges. J Microbiol Methods 63(1):1–19

    Article  CAS  Google Scholar 

  • Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-Garcia C, Rodriguez G, Massol-Deya A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, Loffler FE (2012) Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci 109(48):19709–19714

    Article  CAS  Google Scholar 

  • Santoro AE, Francis CA, de Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10(4):1068–1079

    Article  CAS  Google Scholar 

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke B-M, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11(2):446–456

    Article  CAS  Google Scholar 

  • Sofo A, Scopa A, Dumontet S, Mazzatura A, Pasquale V (2012) Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J Environ Sci Health B 47(7):653–659

    Article  CAS  Google Scholar 

  • Spiertz JHJ (2010) Nitrogen, sustainable agriculture and food security. Rev Agron Sustain Dev 30(1):43–55

    Article  CAS  Google Scholar 

  • Stevens RJ, Laughlin RJ, Burns LC, Arah JRM, Hood RC (1997) Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol Biochem 29(2):139–151

    Article  CAS  Google Scholar 

  • Szukics U, Abell GCJ, Hödl V, Mitter B, Sessitsch A, Hackl E, Zechmeister-Boltenstern S (2010) Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol Ecol 72(3):395–406

    Article  CAS  Google Scholar 

  • Tahovská K, Kaňa J, Bárta J, Oulehle F, Richter A, Šantrůčková H (2013) Microbial N immobilization is of great importance in acidified mountain spruce forest soils. Soil Biol Biochem 59:58–71

    Article  CAS  Google Scholar 

  • Teixeira L, Yergeau E (2012) Quantification of microorganisms using a functional gene approach. In: Quantitative real-time PCR in applied microbiology. Caister Academic Press, Norfolk, pp 107–120

    Google Scholar 

  • Thompson KA, Deen B, Dunfield KE (2016) Soil denitrifier community size changes with land use change to perennial bioenergy cropping systems. Soil 2(4):523–535

    Article  CAS  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis ÃS, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49(3):401–417

    Article  CAS  Google Scholar 

  • Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S (2007) Silver (Ag+) reduces denitrification and induces enrichment of novelnirK genotypes in soil. FEMS Microbiol Lett 270(2):189–194

    Article  CAS  Google Scholar 

  • Tietema A (1998) Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. For Ecol Manag 101(1–3):29–36

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    Article  CAS  Google Scholar 

  • Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci 108(20):8420–8425

    Article  CAS  Google Scholar 

  • Vinten AJA, Ball BC, O’Sullivan MF, Henshall JK (2002) The effects of cultivation method, fertilizer input and previous sward type on organic C and N storage and gaseous losses under spring and winter barley following long-term leys. J Agric Sci 139(03):231

    Article  CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750

    Google Scholar 

  • Wafula D, White JR, Canion A, Jagoe C, Pathak A, Chauhan A (2015) Impacts of long-term irrigation of domestic treated wastewater on soil biogeochemistry and bacterial community structure. Appl Environ Microbiol 81(20):7143–7158

    Article  CAS  Google Scholar 

  • Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40(3):803–813

    Article  CAS  Google Scholar 

  • Wakelin SA, Gregg AL, Simpson RJ, Li GD, Riley IT, McKay AC (2009) Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia 52(4):237–251

    Article  CAS  Google Scholar 

  • Wakelin SA, Clough TJ, Gerard EM, O’Callaghan M (2013) Impact of short-interval, repeat application of dicyandiamide on soil N transformation in urine patches. Agric Ecosyst Environ 167:60–70

    Article  CAS  Google Scholar 

  • Wallenstein MD, Vilgalys RJ (2005) Quantitative analyses of nitrogen cycling genes in soils. Pedobiologia 49(6):665–672

    Article  CAS  Google Scholar 

  • Wessén E, Hallin S, Philippot L (2010) Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management. Soil Biol Biochem 42(10):1759–1765

    Article  CAS  Google Scholar 

  • Wessén E, Söderström M, Stenberg M, Bru D, Hellman M, Welsh A, Thomsen F, Klemedtson L, Philippot L, Hallin S (2011) Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. ISME J 5(7):1213–1225

    Article  CAS  Google Scholar 

  • Witte C-P (2011) Urea metabolism in plants. Plant Sci 180(3):431–438

    Article  CAS  Google Scholar 

  • Woodmansee RG, Dodd JL, Bowman RA, Clark FE, Dickinson CE (1978) Nitrogen budget of a shortgrass prairie ecosystem. Oecologia 34(3):363–376

    Article  CAS  Google Scholar 

  • Wu L, Osmond DL, Graves AK, Burchell MR, Duckworth OW (2012) Relationships between nitrogen transformation rates and gene abundance in a riparian buffer soil. Environ Manag 50(5):861–874

    Article  Google Scholar 

  • Wuebbles D (2002) Atmospheric methane and global change. Earth Sci Rev 57(3–4):177–210

    Article  CAS  Google Scholar 

  • Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z, Jia Z (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5(7):1226–1236

    Article  CAS  Google Scholar 

  • Yin C, Fan F, Song A, Li Z, Yu W, Liang Y (2014) Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS- and nirK-denitrifying bacterial community. Eur J Soil Biol 65:47–56

    Article  CAS  Google Scholar 

  • Zalidis G, Stamatiadis S, Takavakoglou V, Eskridge K, Misopolinos N (2002) Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric Ecosyst Environ 88(2):137–146

    Article  Google Scholar 

  • Zhalnina K, de Quadros PD, Gano KA, Davis-Richardson A, Fagen JR, Brown CT, Giongo A, Drew JC, Sayavedra-Soto LA, Arp DJ, Camargo FAO, Daroub SH, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2013) Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front Microbiol 4:104

    Article  Google Scholar 

  • Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69(2):395–406

    Article  CAS  Google Scholar 

  • Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci 107(40):17240–17245

    Article  CAS  Google Scholar 

  • Zhang X, Liu W, Schloter M, Zhang G, Chen Q, Huang J, Li L, Elser JJ, Han X (2013) Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One 8(10):e76500

    Article  CAS  Google Scholar 

  • Zhang Q, Liang G, Myrold DD, Zhou W (2017) Variable responses of ammonia oxidizers across soil particle-size fractions affect nitrification in a long-term fertilizer experiment. Soil Biol Biochem 105:25–36

    Article  CAS  Google Scholar 

  • Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X, Fei S, Deng S, He Z, Van Nostrand JD (2012) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Chang 2(2):106

    Article  CAS  Google Scholar 

  • Zornoza R, Guerrero C, Mataix-Solera J, Scow KM, Arcenegui V, Mataix-Beneyto J (2009) Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of eastern Spain. Appl Soil Ecol 42(3):315–323

    Article  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61(4):533–616

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lily Pereg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereg, L., McMillan, M. (2020). Nitrogen-Cycling Communities in Organically Amended Versus Conventionally Managed Agricultural Soil. In: Datta, R., Meena, R., Pathan, S., Ceccherini, M. (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_11

Download citation

Publish with us

Policies and ethics