Skip to main content

Machine Learning Based Fault Diagnosis in HVDC Transmission Lines

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 932))

Included in the following conference series:

Abstract

HVDC transmission system has been becoming an alternating approach to AC transmission because of its stability and effective controlling. Due to revolution in the field of power electronics, it is expected that HVDC transmission system will play a vital role in power transferring in power systems which are becoming more and more complex with the growing demands of load. Therefore, in order to ensure continuity of supply, there is a need to foresee or to detect any abnormality in HVDC systems. Machine learning is a way of acquiring information from data without being explicitly programmed. In this research, fault diagnostic technique is developed based on machine learning approach. Matlab/Simulink will be used to carry out simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammons, T.J., Woodford, D., Loughtan, J., Chamia, M.: Role of HVDC transmission in future energy development. IEEE Power Eng. Rev. 20(2), 10–25 (2000)

    Google Scholar 

  2. Teichler, S.L., Levitine, I.: HVDC transmission: a path to the future? Electr. J 23, 27–41 (2010). https://doi.org/10.1016/j.tej.2010.04.002

    Google Scholar 

  3. Kalair, A., Abas, N., Khan, N.: Comparative study of HVAC and HVDC transmission systems. Renew. Sustain. Energy Rev. 59, 1653–1675 (2016)

    Google Scholar 

  4. Faulkner, R.W., Todd, R.: Long distance underground HVDC transmission via elpipes. In: International Conference on High Voltage Engineering, 11–14 October 2010

    Google Scholar 

  5. Bahrman, M.P., Johnson, B.K.: The ABCs of HVDC transmission technologies. IEEE Power Energy Mag. 5, 32–44 (2007)

    Google Scholar 

  6. Kuruganty, S.: HVDC transmission system models for power system reliability evaluation. In: IEEE WES-CANEX 95 Conference Proceedings, pp. 501–507 (1995)

    Google Scholar 

  7. Andersen, B.R.: HVDC transmission-opportunities and challenges. In: 2006 the 8th IEE International Conference on AC and DC Power Transmission, pp. 24–29, March 2006

    Google Scholar 

  8. Liu, R.: Long-distance DC electrical power transmission. IEEE Electr. Insul. Mag. 29(5), 37–46 (2013)

    Google Scholar 

  9. Dominguez, A.H., Macedo, L.H., Escobar, A.H., Romero, R.: Multistage security-constrained HVAC/HVDC transmission expansion planning with a reduced search space. IEEE Trans. Power Syst. 32, 4805–4817 (2017)

    Google Scholar 

  10. Halder, T.: Comparative study of HVDC and HVAC for a bulk power transmission. In: IEEE ICPEC 2013, pp. 139–144 (2013)

    Google Scholar 

  11. Rahman, M., Rabbi, F., Islam, K., Rahman, F.M.M.: HVDC over HVAC power transmission system: fault current analysis and effect comparison (2014)

    Google Scholar 

  12. Meah, K., Ula, S.: Comparative evaluation of HVDC and HVAC transmission systems. In: IEEE Power Engineering Society General Meeting, pp. 1–5 (2007)

    Google Scholar 

  13. Xue, Y., Zhang, X.P.: Reactive power and AC voltage control of LCC HVDC system with controllable capacitors. IEEE Trans. Power Syst. 32(1), 753–764 (2017)

    Google Scholar 

  14. Iggland, E., Wiget, R., Chatzivasileiadis, S., et al.: Multi-area DC-OPF for HVAC and HVDC grids. IEEE Trans. Power Syst. 30(5), 2450–2459 (2015)

    Google Scholar 

  15. Pan, J., Nuqui, R., Srivastava, K., Jonsson, T., Holmberg, P., Hafner, Y.-J.: AC grid with embedded VSC-HVDC for secure and efficient power delivery. Proc. IEEE Energy, 1–6 (2008)

    Google Scholar 

  16. Das, D., Pan, J., Bala, S.: HVDC light for large offshore wind farm integration. In: 2012 IEEE Power Electronics and Machines in Wind Applications (PEMWA), pp. 1–7, 16–18 July 2012

    Google Scholar 

  17. Wasserrab, A., Balzer, G.: Calculation of short circuit currents in HVDC systems. In: 46th Universities’ Power Engineering Conference, September 2011

    Google Scholar 

  18. Eswar, K.: A study on some of the important aspects related to feasibility of HVDC grids (2011)

    Google Scholar 

  19. Yang, J., Fletcher, J.E., O’Reilly, J.: Contribution of HVDC converters to the DC short circuit current. In: Proceedings of 2010 IEEE International Symposium on Industrial Electronics, pp. 2437–2442 (2010)

    Google Scholar 

  20. Wasserrab, A., Just, B., Balzer, G.: Contribution of HVDC converters to the DC short circuit current. In: Proceedings of 48th International Universities’ Power Engineering Conference (UPEC), pp. 1–6 (2013)

    Google Scholar 

  21. Tang, L., Ooi, B.-T.: Protection of VSC-multi-terminal HVDC against DC faults. In: 2002 Proceedings of IEEE 33rd Annual Power Electronics Specialists Conference, vol. 2, pp. 719–724 (2002)

    Google Scholar 

  22. Candelaria, J., Park, J.-D.: VSC-HVDC system protection: a review of current methods. In: 2011 Proceedings of IEEE Power Systems Conference and Exposition, pp. 1–7 (2011)

    Google Scholar 

  23. Sneath, J., Rajapakse, A.: Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid dc breakers. IEEE Trans. Power Deliv. 31(3), 973–981 (2016)

    Google Scholar 

  24. Flourentzou, N., Agelidis, V., Demetriades, G.: VSC-based HVDC power transmission systems: an overview. IEEE Trans. Power Electron. 24(3), 592–602 (2009)

    Google Scholar 

  25. Gemmel, L.B., Dorn, J., Retzmann, D., et al.: Prospects of multilevel VSC technologies for power transmission. In: Proceedings of IEEE PES Transmission and Distribution Conference and Exposition, pp. 21–24 (2008)

    Google Scholar 

  26. Han, K.L., Cai, Z.X., Xu, M., He, Z.: Dynamic characteristics of characteristic parameters of traveling wave protection for HVDC transmission line and their setting. Power Syst. Technol. 37, 255–260 (2013)

    Google Scholar 

  27. Chen, S.L., Zhang, J., Bi, G.H., Xie, J.W., Shu, H.C.: Wavelet analysis based two-terminal transient voltage protection for UHVDC transmission lines. Power Syst. Technol. 37, 2719–2725 (2013)

    Google Scholar 

  28. Li, X.P., Tang, Y., Teng, Y.F., Zhen, W., Li, W.: Pilot protection method based on amplitude comparison of backward traveling wave for HVDC transmission lines. Power Syst. Technol. 40, 3095–3101 (2016)

    Google Scholar 

  29. Gao, S.P., Suona, J.L., Song, G.B., Zhang, J.K., Hou, Z.: A new current differential protection principle for HVDC transmission lines. Autom. Electr. Power Syst. 34, 45–49 (2010)

    Google Scholar 

  30. Xing, L.H., Chen, Q., Fu, Z.Y., Gao, Z.J., Yu, C.G.: Protection principle for HVDC transmission lines based on fault component of voltage and current. Autom. Electr. Power Syst. 36, 61–66 (2012)

    Google Scholar 

  31. Li, Z.Q., Lu, G.F., Lv, Y.P.: A novel scheme of HVDC transmission line voltage traveling wave protection based on wavelet transform. Power Syst. Prot. Control 38, 40–45 (2010)

    Google Scholar 

  32. Ai, L., Chen, W.H.: Research on traveling wave protection criterion of HVDC transmission line. Relay 31, 41–44 (2003)

    Google Scholar 

  33. Gao, S.P., Suona, J.L., Song, G.B., Zhang, J.K., Hou, Z.: A new pilot protection principle for HVDC transmission line based on current fault component. Autom. Electr. Power Syst. 35, 52–56 (2011)

    Google Scholar 

  34. Li, X.P., Quan, Y.S., Huang, X., Ma, Y.W., Yang, J.W.: Study of travelling wave protection of HVDC transmission line on mathematical morphology. Relay 34, 5–9 (2006)

    Google Scholar 

  35. Ashouri, M., Bak, C.L., Da Silva, F.F.: A review of the protection algorithms for multi-terminal VCD-HVDC grids. In: 2018 IEEE International Conference on Industrial Technology (ICIT), pp. 1673–1678 (2018)

    Google Scholar 

  36. Poongothai, C., Gayathri, K.: A review on HVDC protection system. In: 2017 IEEE International Conference on Circuits and Systems (ICCS), pp. 134–139 (2017)

    Google Scholar 

  37. Tzelepis, D., et al.: Centralised busbar differential and wavelet-based line protection system for multi-terminal direct current grids with practical IEC-61869-compliant measurements. IET Gener. Transm. Distrib. 12(14), 3578–3586 (2018)

    Google Scholar 

  38. Hossam-Eldin, A., Lotfy, A., Elgamal, M., Ebeed, M.: Artificial intelligence-based short-circuit fault identifier for MT-HVDC systems. IET Gener. Transm. Distrib. 12(10), 2436–2443 (2018)

    Google Scholar 

  39. Raza, A., et al.: A protection scheme for multi-terminal VSC-HVDC transmission systems. IEEE Access 6, 3159–3166 (2018)

    Google Scholar 

  40. You, M., et al.: Study of non-unit transient-based protection for HVDC transmission lines. In: Power and Energy Engineering Conference 2009, APPEEC 2009, Asia-Pacific, pp. 1–5 (2009)

    Google Scholar 

  41. Zhang, J., Suonan, J., Jiao, Z., Song, G., Su, X.: A fast full-line tripping distance protection method for HVDC transmission line. In: 2012 Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1–5 (2012)

    Google Scholar 

  42. Azad, S.P., Letermeb, W., Van Hertem, D.: Fast breaker failure backup protection for HVDC grids. Electr. Power Systs. Res. 138, 99–105 (2015)

    Google Scholar 

  43. Leterme, W., Azad, S.P., Van Hertem, D.: A local backup protection algorithm for HVDC grids. IEEE Trans. Power Deliv. 31(4), 1767–1775 (2016)

    Google Scholar 

  44. Naidoo, D., Ijumba, N.M.: HVDC line protection for the proposed future HVDC systems. In: Proceedings of the International Conference on Power System Technology (POWERCON), pp. 1327–1332, November 2004

    Google Scholar 

  45. Jafarian, P., Sanaye-Pasand, M.: High-frequency transients-based protection of multiterminal transmission lines using the SVM technique. IEEE Trans. Power Deliv. 28(1), 188–196 (2013)

    Google Scholar 

  46. Bao-de, L., Jian-cheng, T.: Transient fault location for HVDC transmission lines based on voltage distribution and one-terminal information. In: 2014 China International Conference on Electricity Distribution (CICED), Shenzhen, pp. 508–510 (2014)

    Google Scholar 

  47. Farshad, M., Sadeh, J.: A novel fault-location method for HVDC transmission lines based on similarity measure of voltage signals. IEEE Trans. Power Deliv. 28(4), 2483–2490 (2013)

    Google Scholar 

  48. Suonan, J., Gao, S., Song, G., Jiao, Z., Kang, X.: A novel fault-location method for HVDC transmission lines. IEEE Trans. Power Deliv. 25(2), 1203–1209 (2010)

    Google Scholar 

  49. Nanayakkara, O.M.K.K., Rajapakse, A.D., Wachal, R.: Location of DC line faults in conventional HVDC systems with segments of cables and overhead lines using terminal measurements. IEEE Trans. Power Deliv. 27(1), 279–288 (2012)

    Google Scholar 

  50. Nanayakkara, O.M.K.K., Rajapakse, A.D., Wachal, R.: Traveling wave-based line fault location in star-connected multiterminal HVDC systems. IEEE Trans. Power Deliv. 27(4), 2286–2294 (2012)

    Google Scholar 

  51. Adapa, R.: High-wire act: Hvdc technology: the state of the art. IEEE Power Energy Mag. 10(6), 18–29 (2012)

    Google Scholar 

  52. Padiyar, K.R.: HVDC Power Transmission Systems: Technology and System Interactions. Wiley, New York (1990)

    Google Scholar 

  53. Okba, M.H., Saied, M.H., Mostafa, M.Z., Abdel-Moneim, T.M.: High voltage direct current transmission - a review, part I. In: 2012 IEEE Energytech, pp. 1–7 (2012)

    Google Scholar 

  54. Kontos, E., Pinto, R.T., Rodrigues, S., Bauer, P.: Impact of HVDC transmission system topology on multi-terminal DC network faults. IEEE Trans. Power Deliv. 30, 844–852 (2015)

    Google Scholar 

  55. De Boeck, S., Tielens, P., Leterme, W., Van Hertem, D.: Configurations and earthing of HVDC grids. In: IEEE Power Energy Society General Meeting (2013)

    Google Scholar 

  56. Gomis-ellmunt, O., Liang, J., Ekanayake, J., King, R., Jenkins, N.: Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms. Elect. Power Syst. Res. 81, 271–281 (2011)

    Google Scholar 

  57. Garcia, J.C., et al.: Modeling of multi-level multi-terminal HVDC VSC systems in EMT programs. In: CIGRE San Francisco Colloquium (2012)

    Google Scholar 

  58. Villablanca, M., Valle, J.D., Rojas, J., Rojas, W.: A modified back to back HVDC system for 36-pulse operation. IEEE Trans. Power Deliv. 15(2), 641–645 (2000)

    Google Scholar 

  59. Bagen, B., Jacobson, D., Lane, G., Turanli, H.M.: Evaluation of the performance of back-to-back HVDC converter and variable frequency transformer for power flow control in a weak interconnection. In: 2007 IEEE Power Engineering Society General Meeting, June 2007

    Google Scholar 

  60. Li, H., Lin, F., He, J., Lu, Y., Ye, H., Zhang, Z.: Analysis and simulation of monopolar grounding fault in bipolar HVDC transmission system. In: 2007 IEEE Power Engineering Society General Meeting, PES (2007)

    Google Scholar 

  61. Kinbark, E.W.: Transient overvoltage caused by monopolar ground fault on bipolar DC line: theory and simulation. IEEE Tran. Power Appar. Syst. 89(4), 584–592 (1970)

    Google Scholar 

  62. Owen, M.: Homopolar Electro-mechanical Rotary Power Converter (HERPC), May 2003

    Google Scholar 

  63. Owen, M.: A Homopolar Electro-mechanical Rotary Power Converter (HERPC). In: The 12th IEEE Mediterranean Electrotechnical Conference MELECON, May 2004

    Google Scholar 

  64. Kong, F., Hao, Z., Zhang, S., et al.: Development of a novel protection device for bipolar HVDC transmission lines. IEEE Trans. Power Deliv. 29(5), 2270–2278 (2014)

    Google Scholar 

  65. Liu, X., Osman, A.H., Malik, O.P.: Hybrid traveling wave/boundary protection for monopolar HVDC line. IEEE Trans. Power Deliv. 24(2), 569–578 (2009)

    Google Scholar 

  66. Zhang, Y., Tai, N., Xu, B.: A travelling wave protection scheme for bipolar HVDC line. In: Proceedings of International Conference on Advance Power System, vol. 3, pp. 1728–1731 (2011)

    Google Scholar 

  67. Zhang, Y., Tai, N., Xu, B.: Fault analysis and traveling-wave protection scheme for bipolar HVDC lines. IEEE Trans. Power Deliv. 27(3), 1583–1591 (2012)

    Google Scholar 

  68. Jain, R., Gupta, C.P., Kumar, V.: Bipolar HVDC transmission (Rihand to Dadri) power flow control using GA & PSO algorithm. In: 2015 Annual IEEE India Conference (INDICON), New Delhi, pp. 1–6 (2015)

    Google Scholar 

  69. Alharbi, M.M.: Modeling of multi-terminal VSC-based HVDC system. In: PES General Meeting (2016)

    Google Scholar 

  70. Alharbi, M.M.: Modeling of multi-terminal VSC-based HVDC systems, Missouri University of Science and Technology (2014)

    Google Scholar 

  71. Pan, W., Chang, Y., Chen, H.: Hybrid multi-terminal HVDC system for large scale wind power. In: PSCE 2006, pp. 755–759 (2006)

    Google Scholar 

  72. Marten, A.-K., Westermann, D., Luginbuhl, M., Sauvain, H.F.: Integration of a multi terminal DC grid in an interconnected AC network. In: 2013 IEEE Grenoble PowerTech (POWERTECH), pp. 1–6 (2013)

    Google Scholar 

  73. Wiget, R., Andersson, G.: Optimal power flow for combined AC and multi-terminal HVDC grids based on VSC converters. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–8 (2012)

    Google Scholar 

  74. Jiang-Hafner, Y., Duchen, H., Karlsson, M., Ronstrom, L., Abrahamsson, B.: HVDC with voltage source converters-a powerful standby black start facility. In: 2008 Transmission and Distribution Conference and Exposition, T&D. IEEE/PES, pp. 1–9 (2008)

    Google Scholar 

  75. Friedrich, K.: Modern HVDC PLUS application of VSC in modular multilevel converter topology. In: 2010 IEEE International Symposium on Industrial Electronics (ISIE), pp. 3807–3810 (2010)

    Google Scholar 

  76. Luo, J., Yao, J., Wu, D., Wen, C., Yang, S., Liu, J.: Application research on VSC-HVDC in urban power network. In: 2011 IEEE Power Engineering and Automation Conference (PEAM), pp. 115–119 (2011)

    Google Scholar 

  77. Yousuf, S.M., Subramaniyan, M.S.: HVDC and facts in power system. Int. J. Sci. Res. 2 (2013)

    Google Scholar 

  78. Callavik, M., Lundberg, P., Hansson, O.: NORDLINK Pioneering VSC-HVDC interconnector between Norway and Germany, March 2015

    Google Scholar 

  79. Gelman, V.: Insulated-gate bipolar transistor rectifiers: why they are not used in traction power substations. Veh. Technol. Mag. IEEE 9, 86–93 (2014)

    Google Scholar 

  80. Abarrategui, O., Larruskain, D., Zamora, I., Valverde, V., Buigues, G., Iturregi, A.: VSC-based HVDC system capability to ride through faults. In: International Conference on Renewable Energy and Power Quality (2015)

    Google Scholar 

  81. Shewarega, F., Erlich, I.: Simplified modeling of VSC-HVDC in power system stability studies. In: International Federation of Automatic Control, Cape Town, South Africa (2014)

    Google Scholar 

  82. Davidson, C.C., Trainer, D.R.: Innovative concepts for hybrid multilevel converters for HVDC power transmission. In: 9th IET International Conference on AC and DC Power Transmission, pp. 1–5 (2010)

    Google Scholar 

  83. Marquardt, R.: Modular multilevel converter: an universal concept for HVDC-networks and extended DC-Bus-applications. In: 2010 International Power Electronics Conference (IPEC), pp. 502–507 (2010)

    Google Scholar 

  84. Guangfu, T., Zhiyuan, H., Hui, P.: R&D and application of voltage sourced converter based high voltage direct current engineering technology in China. J. Mod. Power Syst. Clean Energy 2, 1–15 (2014)

    Google Scholar 

  85. Hurtuk, P., Radvan, R., Frivaldský, M.: Investigation of possibilities to increasing efficiency of full bridge converter designed for low output voltage and high output current applications. In: ELEKTRO 2012, pp. 129–132 (2012)

    Google Scholar 

  86. Marquardt, R.: Modular multilevel converter topologies with DC-Short circuit current limitation. In: 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia, pp. 1425–1431 (2011)

    Google Scholar 

  87. Abu-Rub, H., Holtz, J., Rodriguez, J., Baoming, G.: Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications. IEEE Trans. Ind. Electron. 57, 2581–2596 (2010)

    Google Scholar 

  88. Adam, G.P., Finney, S.J., Massoud, A.M., Williams, B.W.: Capacitor balance issues of the diode-clamped multilevel inverter operated in a quasi two-state mode. IEEE Trans. Ind. Electron. 55, 3088–3099 (2008)

    Google Scholar 

  89. Najafi, E., Yatim, A.H.M.: Design and implementation of a new multilevel inverter topology. IEEE Trans. Ind. Electron. 59, 4148–4154 (2012)

    Google Scholar 

  90. Zhang, Y., Adam, G.P., Lim, T.C., Finney, S.J., Williams, B.W.: Analysis of modular multilevel converter capacitor voltage balancing based on phase voltage redundant states. IET Power Electron. 5, 726–738 (2012)

    Google Scholar 

  91. Glinka, M., Marquardt, R.: A new AC/AC multilevel converter family. IEEE Trans. Ind. Electron. 52, 662–669 (2005)

    Google Scholar 

  92. Adam, G.P., Anaya-Lara, O., Burt, G.M., Telford, D., Williams, B.W., McDonald, J.R.: Modular multilevel inverter: pulse width modulation and capacitor balancing technique. IET Power Electron. 3, 702–715 (2010)

    Google Scholar 

  93. Adam, G., Davidson, I.: Robust and generic control of full-bridge modular multilevel converter high-voltage DC transmission systems. IEEE Power Electron. Trans. (2015)

    Google Scholar 

  94. Qiang, S., Wenhua, L., Xiaoqian, L., Hong, R., Shukai, X., Licheng, L.: A steady-state analysis method for a modular multilevel converter. IEEE Trans. Power Electron. 28, 3702–3713 (2013)

    Google Scholar 

  95. Glinka, M., Marquardt, R.: A new AC/AC multilevel converter family. IEEE Trans. Ind. Electron. 52, 662–669 (2005)

    Google Scholar 

  96. Muzzammel, R., Fateh, H.M., Ali, Z.: Analytical behaviour of thyrister based HVDC transmission lines under normal and faulty conditions. In: 2018 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, pp. 1–5 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheel Muzzammel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muzzammel, R. (2019). Machine Learning Based Fault Diagnosis in HVDC Transmission Lines. In: Bajwa, I., Kamareddine, F., Costa, A. (eds) Intelligent Technologies and Applications. INTAP 2018. Communications in Computer and Information Science, vol 932. Springer, Singapore. https://doi.org/10.1007/978-981-13-6052-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6052-7_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6051-0

  • Online ISBN: 978-981-13-6052-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics