Skip to main content

Machining of Thermoplastic Composites

  • Chapter
  • First Online:
Processing of Green Composites

Abstract

Evolution of high-strength thermoplastics has made it possible to replace thermosets in the field of fiber-reinforced polymer composites. Though, near-net-shaped products can be made out of fiber-reinforced thermoplastics using available processing methods, still, in most of the cases, assembling is required to get the desired shape of products. Drilling is the most often required machining process in fiber-reinforced plastics industry in order to assemble various components into a finished product. A number of products get rejected at the stage of joining due to the damage induced in the component at the time of drilling. Thus, it has become necessary to evaluate the parameters which may affect the quality of the drilled hole. Drilling of the thermoplastic-based composites is much different than that of thermoset-based composites in various aspects. The present chapter is an attempt to understand the complexity behind machining of fiber-reinforced thermoplastic components due to their heterogeneous nature. The present chapter also emphases numerous problems occurring while machining thermoplastic composites and their possible solutions. The discussion on the machinability of thermoplastic composites and the effect of machining parameters like feed rate and cutting speed, etc., on the integrity of thermoplastic composites is also included in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghosh A, Mallik AK (2007) Manufacturing science, 26th edn. East-West Press Private limited. ISBN 81-85095-85-X

    Google Scholar 

  2. Bajpai PK, Singh I (2013) Drilling behavior of sisal fiber-reinforced polypropylene composite laminates. J Reinf Plast Compos 32(20):1569–1576

    Article  CAS  Google Scholar 

  3. Sheikh-Ahmad JY (2009) Machining of polymer composites. Springer science and business media. ISBN 978-0-387-35539-9

    Google Scholar 

  4. Alauddin M, Choudhury IA, El-Baradie MA, Hashmi MSJ (1995) Plastics and their machining: a review. J Mater Process Technol 54:40–46

    Article  Google Scholar 

  5. Diaz-Alvarez A, Rubio-Lopez A, Santiuste C, Miguelez MH (2017) Experimental analysis of drilling induced damage in biocomposites. Text Res J. https://doi.org/10.1177/0040517517725118

  6. Debnath K, Singh I, Dvivedi A (2014) Drilling characteristics of sisal fiber-reinforced epoxy and polypropylene composites. Mater Manuf Process 29(11–12):1401–1409

    Article  CAS  Google Scholar 

  7. Brown NWA, Worrall CM, Ogin SL, Smith PA (2015) Investigation into the mechanical properties of thermoplastic composites containing holes machined by a thermally-assisted piercing (TAP) process. Adv Manuf Polym Compos Sci 1(4):199–209. https://doi.org/10.1080/20550340.2015.1117748

    Article  Google Scholar 

  8. Abrate S, Walton D (1992) Machining of composite materials part II: non-traditional methods. Compos Manuf 2:85–94

    Article  Google Scholar 

  9. Aoki S, Hirai S, Nishimura T (2005) Prevention from delamination of composite material during drilling using ultrasonic vibration. Key Eng Mater 291–292:465–470

    Article  Google Scholar 

  10. Hocheng H, Puw HY (1992) On drilling characteristic of fiber-reinforced thermoset and thermoplastic. Int J Mach Tool Manuf 32(4):583–592

    Article  Google Scholar 

  11. Hocheng H, Puw HY (1993) Machinability of fiber-reinforced thermoplastics in drilling. Trans ASME 115:146–149

    CAS  Google Scholar 

  12. Abilash N, Sivapragash M (2016) Optimizing the delamination failure in bamboo fiber reinforced polyester composite. J King Saud Univ Eng Sci 28:92–102

    Google Scholar 

  13. Palanikumar K, Srinivasan T, Rajagopal K, Latha B (2015) Thrust force analysis in drilling glass fiber reinforced/polypropylene (GFR/PP) composites. Mat Manuf Process. https://doi.org/10.1080/10426914.2014.961478

  14. Mohan NS, Ramachandra A, Kulkarni SM (2005) Machining of fiber-reinforced thermoplastics: influence of feed and drill size on thrust force and torque during drilling. J Reinf Plast Compos 24(12):1247–1257

    Article  CAS  Google Scholar 

  15. Davim JP, Rubio JC, Abrao AM (2007) A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Compos Sci Technol 67:1939–1945

    Article  Google Scholar 

  16. Bajpai PK, Debnath K, Singh I (2015) Hole making in natural fiber-reinforced polylactic acid laminates: an experimental investigation. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705715575094

  17. Chegdani F, El-Mansori M (2018) Friction scale effect in drilling natural fiber composites. Tribol Int. https://doi.org/10.1016/j.triboint.2017.12.006

  18. Cong WL, Zou X, Deines TW, Wu N, Wang X, Pei ZJ (2012) Rotary ultrasonic machining of carbon fiber reinforced plastic composites: an experimental study on cutting temperature. J Reinf Plast Compos 31(22):1516–1525

    Article  CAS  Google Scholar 

  19. Debnath K, Sisodia M, Kumar A, Singh I (2016) Damage free hole making in fiber-reinforced composites: an innovative tool design approach. Mater Manuf Process. https://doi.org/10.1080/10426914.2016.1140191

  20. Lopez-Arraiza A, Amenabar I, Agirregomezkorta A, Sarrionandia M, Aurrekoetxea J (2011) Experimental analysis of drilling damage in carbon-fiber reinforced thermoplastic laminates manufactured by resin transfer molding. J Compos Mater 46(6):717–725

    Article  Google Scholar 

  21. Tsao CC (2008) Experimental study of drilling composite materials with step-core drill. Mater Des 29:1740–1744

    Article  CAS  Google Scholar 

  22. Srinivasan T, Palanikumar K, Rajagopal K, Latha B (2016) Optimization of delamination factor in drilling GFR-polypropylene composites. Mater Manuf Process. https://doi.org/10.1080/10426914.2016.1151038

  23. Srinivasan T, Palanikumar K, Rajagopal K (2014) Influence of thrust force in drilling of glass fiber reinforced polycarbonate (GFR/PC) thermoplastic matrix composites using box-Behnken design. Procedia Mater Sci 5:2152–2158

    Article  CAS  Google Scholar 

  24. Anand RS, Patra K (2017) Mechanistic cutting force modelling for micro-drilling of CFRP composite laminates. CIRP J Manuf Sci Technol 16:55–63

    Article  Google Scholar 

  25. Khashaba UA, El-Sonbaty IA, Selmy AI, Megahed AA (2010) Machinability analysis in drilling woven GFR/epoxy composites: part I—effect of machining parameters. Compos A 41:391–400

    Article  Google Scholar 

  26. Kim D, Ramulu M, Doan X (2005) Influence of consolidation process on the drilling performance and machinability of PIXA-M and PEEK thermoplastic composites. J Thermoplast Compos Mater 18:195–217

    Article  Google Scholar 

  27. Kakinuma Y, Ishida T, Koike R, Klemme H, Denkena B, Aoyama T (2015) Ultrafast feed drilling of carbon fiber-reinforced thermoplastics. Procedia CIRP 35:91–95

    Article  Google Scholar 

  28. Rubio JCC, Da-Silva LJ, Leite WO, Panzera TH, Filho SLMR, Davim JP (2013) Investigations on the drilling process of unreinforced and reinforced polyamides using Taguchi method. Compos B 55:338–344

    Article  Google Scholar 

  29. Debnath K, Singh I (2017) Low-frequency modulation-assisted drilling of carbon-epoxy composite laminates. J Manuf Process 25:262–273

    Article  Google Scholar 

  30. Jia Z, Niu RFB, Qian B, Bai Y, Wang F (2016) Novel drill structure for damage reduction in drilling CFRP composites. Int J Mach Tools Manuf 110:55–65

    Article  Google Scholar 

  31. Mayuet PF, Girot F, Lamíkiz A, Fernández-Vidal SR, Salguero J, Marcos M (2015) SOM/SEM based characterization of internal delaminations of CFRP samples machined by AWJM. Procedia Eng 132:693–700

    Article  CAS  Google Scholar 

  32. Ramesha N, Siddaramaiah, Akhtar S (2014) Abrasive water jet machining and mechanical behavior of banyan tree saw dust powder loaded polypropylene green composites. Polym Compos. https://doi.org/10.1002/pc.23348

  33. Wang J (1999) A machinability study of polymer matrix composites using abrasive waterjet cutting technology. J Mater Process Technol 94:30–35

    Article  Google Scholar 

  34. Akshay AH, Dilpreet S, Sagar K, Dinesh K, Suhasini G (2015) Machining damage in FRPs: laser versus conventional drilling. Compos Part A. http://dx.doi.org/10.1016/j.compositesa. 2015.11.036

  35. Chouhan H, Singh D, Parmar V, Kalyanasundaram D, Bhatnagar N (2016) Laser machining of Kevlar fiber reinforced laminates e Effect of polyetherimide versus polypropylene matrix. Compos Sci Technol 134:267–274

    Article  CAS  Google Scholar 

  36. Yalukova O, Sarady I (2006) Investigation of interaction mechanisms in laser drilling of thermoplastic and thermoset polymers using different wavelengths. Compos Sci Technol 66:1289–1296

    Article  CAS  Google Scholar 

  37. Zemann R, Kain L, Bleicher F (2014) Vibration assisted machining of carbon fibre reinforced polymers. Procedia Eng 69:536–543

    Article  CAS  Google Scholar 

  38. Girot FA, Lacalle LNLD, Lamikiz A, Iliescu D (2009) Machinability aspects of polymer matrix composites, chap 2. In: Machining composite material. https://www.researchgate.net/publication/268386427

  39. Tsao CC, Kuo KL, Hsu IC (2012) Evaluation of a novel approach to a delamination factor after drilling composite laminates using a core–saw drill. Int J Adv Manuf Technol 59:617–622

    Article  Google Scholar 

  40. Yallew TB, Kumar, P, Singh ID (2015) A study about hole making in woven jute fabric-reinforced polymer composites. J Mater Des Appl. https://doi.org/10.1177/1464420715587750

  41. Marx W, Trink S (1978) Manufacturing methods for cutting, machining and drilling composite materials. Technical report, AD-B034202

    Google Scholar 

  42. Gehrig M et al (1991) Determining the co-efficient of thermal conductivity according to a quasi-stationary method. J German Plast (Kunstoffe) 81:30–32

    Google Scholar 

  43. Barnes JA, Simms IJ, Farrow GJ, Jackson D, Wostenholm G, Yates B (1990) Thermal expansion behavior of thermoplastic composite materials. J Thermoplast Compos Mater 3:66–80

    Article  Google Scholar 

  44. Weinert K, Kempmann C (2004) Cutting temperature and their effect on the machining behavior in drilling reinforced plastic composites. Adv Eng Mater 6(8)

    Google Scholar 

  45. Shoba C, Ramanaiah N, Rao DN (2014) Influence of dislocation density on the residual stresses induced while machining Al/SiC/RHA hybrid composites. http://dx.doi.org/10.1016/j.jmrt.2014.12.010

  46. Gordon S, Hillery MT (2003) A review of cutting of composite material. J Mater Des Appl 217:35–45

    Google Scholar 

  47. Merino-Perez JL, Royer R, Ayvar-Soberanis S, Merson E (2015) Induced thermo-mechanical damage in the drilling of thermoplastic-toughened CFRP composites. In: 20th international conference on composite materials. https://doi.org/10.13140/rg.2.1.4499.5682

  48. Sheikh-Ahmad J, Davim JP (2012) Tool wear in machining processes for composites, chap 5, pp 116–153. Wood head publication limited

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furkan Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, F., Manral, A., Bajpai, P.K. (2019). Machining of Thermoplastic Composites. In: Rakesh, P., Singh, I. (eds) Processing of Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-6019-0_8

Download citation

Publish with us

Policies and ethics