Skip to main content

Epidermal Barrier for Nematodes Against Toxicity of Environmental Toxicants or Stresses

  • Chapter
  • First Online:
Target Organ Toxicology in Caenorhabditis elegans

Abstract

The C. elegans epidermis, a single epithelial layer surrounding the animal, is a potential model skin. The epidermal barrier is another important primary biological barrier for nematodes against the toxicity of environmental toxicants or stresses. We here mainly introduced and discussed the molecular basis of epidermal barrier against the toxicity of environmental toxicants or stresses. The association between epidermal barrier and activation of innate immune response was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, Singapore

    Book  Google Scholar 

  2. Wang D-Y (2018) Molecular toxicology in Caenorhabditis elegans. Springer, Singapore

    Book  Google Scholar 

  3. Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734

    Article  Google Scholar 

  4. Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306

    Article  CAS  Google Scholar 

  5. Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102

    Article  Google Scholar 

  6. Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450

    Article  CAS  Google Scholar 

  7. Wang D-Y, Yu Y-L, Li Y-X, Wang Y, Wang D-Y (2014) Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS One 9:e115985

    Article  Google Scholar 

  8. Li Y-X, Wang Y, Hu Y-O, Zhong J-X, Wang D-Y (2011) Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans. Neurosci Bull 27:69–82

    Article  Google Scholar 

  9. Ruan Q-L, Qiao Y, Zhao Y-L, Xu Y, Wang M, Duan J-A, Wang D-Y. (2016) Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans. J Ethnopharmacol 177: 101–110

    Article  CAS  Google Scholar 

  10. Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26

    Article  Google Scholar 

  11. Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126

    Article  CAS  Google Scholar 

  12. Zhi L-T, Fu W, Wang X, Wang D-Y (2016) ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–4159

    Article  CAS  Google Scholar 

  13. Zhao Y-L, Yu X-M, Jia R-H, Yang R-L, Rui Q, Wang D-Y (2015) Lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds. Sci Rep 5:17233

    Article  CAS  Google Scholar 

  14. Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y (2016) p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10:1469–1479

    Article  CAS  Google Scholar 

  15. Chisholm AD, Hardin J (2005) Epidermal morphogenesis. WormBook. https://doi.org/10.1895/wormbook.1.35.1

  16. Chisholm AD, Hsiao TI (2012) The C. elegans epidermis as a model skin. I: development, patterning, and growth. Wiley Interdiscip Rev Dev Biol 1:861–878

    Article  Google Scholar 

  17. Chisholm AD, Xu S (2012) The C. elegans epidermis as a model skin. II: differentiation and physiological roles. Wiley Interdiscip Rev Dev Biol 1:879–902

    Article  CAS  Google Scholar 

  18. Chin-Sang ID, Chisholm AD (2000) Form of the worm: genetics of epidermal morphogenesis in C. elegans. Trends Genet 16:544–551

    Article  CAS  Google Scholar 

  19. Kage-Nakadai E, Kobuna H, Kimura M, Gengyo-Ando K, Inoue T, Arai H, Mitani S (2010) Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans. PLoS One 5:e8857

    Article  Google Scholar 

  20. Wu Q-L, Rui Q, He K-W, Shen L-L, Wang D-Y (2010) UNC-64 and RIC-4, the plasma membrane associated SNAREs syntaxin and SNAP-25, regulate fat storage in nematode Caenorhabditis elegans. Neurosci Bull 26:104–116

    Article  CAS  Google Scholar 

  21. Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757

    Article  CAS  Google Scholar 

  22. Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology. https://doi.org/10.1080/17435390.2018.1530395

  23. Wang Q-Q, Zhao S-Q, Zhao Y-L, Rui Q, Wang D-Y (2014) Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv 4:60891–60901

    Article  CAS  Google Scholar 

  24. Thein MC, Winter AD, Stepek G, McCormack G, Stapleton G, Johnstone IL, Page AP (2009) Combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical for post-embryonic viability in Caenorhabditis elegans. J Biol Chem 284:17549–17563

    Article  CAS  Google Scholar 

  25. Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464

    Article  CAS  Google Scholar 

  26. Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y (2014) Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–5906

    Article  CAS  Google Scholar 

  27. Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, Wang D-Y (2016) Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–291

    Article  CAS  Google Scholar 

  28. Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7:1061–1070

    Article  CAS  Google Scholar 

  29. Zhao L, Dong S-S, Zhao Y-L, Shao H-M, Krasteva N, Wu Q-L, Wang D-Y (2019) Dysregulation of let-7 by PEG modified graphene oxide in nematodes with deficit in epidermal barrier. Ecotoxicol Environ Saf 169:1–7

    Article  CAS  Google Scholar 

  30. Ding X-C, Rui Q, Zhao Y-L, Shao H-M, Yin Y-P, Wu Q-L, Wang D-Y (2018) Toxicity of graphene oxide in nematodes with deficit in epidermal barrier caused by RNA interference knockdown of unc-52. Environ Sci Technol Lett. https://doi.org/10.1021/acs.estlett.8b00473

    Article  CAS  Google Scholar 

  31. Moribe H, Yochem J, Yamada H, Tabuse Y, Fujimoto T, Mekada E (2004) Tetraspanin protein (TSP-15) is required for epidermal integrity in Caenorhabditis elegans. J Cell Sci 117:5209–5220

    Article  CAS  Google Scholar 

  32. Xu Z, Luo J, Li Y, Ma L (2015) The BLI-3/TSP-15/DOXA-1 dual oxidase complex is required for iodide toxicity in Caenorhabditis elegans. G3 5:195–203

    Article  CAS  Google Scholar 

  33. Tong A, Lynn G, Ngo V, Wong D, Moseley SL, Ewbank JJ, Goncharov A, Wu Y, Pujol N, Chisholm AD (2009) Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase. Proc Natl Acad Sci U S A 106:1457–1461

    Article  CAS  Google Scholar 

  34. Chuang M, Hsiao TI, Tong A, Xu S, Chisholm AD (2016) DAPK interacts with Patronin and the microtubule cytoskeleton in epidermal development and wound repair. eLife 5:e15833

    Article  Google Scholar 

  35. Zhang Y, Li W, Li L, Li Y, Fu R, Zhu Y, Li J, Zhou Y, Xiong S, Zhang H (2015) Structural damage in the C. elegans epidermis causes release of STA-2 and induction of an innate immune response. Immunity 42:309–320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2019). Epidermal Barrier for Nematodes Against Toxicity of Environmental Toxicants or Stresses. In: Target Organ Toxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-6010-7_4

Download citation

Publish with us

Policies and ethics