Skip to main content

Zeolites and Other Adsorbents

  • Chapter
  • First Online:
Nanoporous Materials for Gas Storage

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Zeolites are crystalline nanoporous aluminosilicates, which have been used as selective and efficient catalysts and adsorbents in several industrial applications. Their use as adsorbents since their discovery is briefly reviewed. The main characteristics that render this group of materials and other closely related suitable for adsorptive separation applications are presented. A number of adsorption separation and/or purification processes which either use zeolites or for which zeolites have been proposed and studied as the key adsorbent are reviewed, as well. Amongst them, we find industrial applications, such as drying of gases and liquids, air separation and linear from branched hydrocarbon separations. Other separation processes still under development, such as carbon dioxide removal from post-combustion gases, methane purification, methane storage or olefin/paraffin separation, have been included in this chapter. Despite being a mature research area in adsorption, zeolite-based separation processes are still blooming because of the advent of new zeolite structures and/or compositional variants that could allow for other challenging separations in the near future. Amongst them, pure silica zeolites are found to be outstanding adsorbents since they combine high adsorption capacities and excellent regenerabilities in swing adsorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cronstedt AF (1756) Om en obekant bårg art, fom kallas Zeolites. Kongl Vetenskaps Acad Handl 17:120–123

    Google Scholar 

  2. Colella C, Gualtieri AF (2007) Cronstedt’s zeolite. Microporous Mesoporous Mater 105:213–221. https://doi.org/10.1016/j.micromeso.2007.04.056

    Article  Google Scholar 

  3. Galli E, Alberti A (1975) The crystal structure of stellerite. Bull Soc Fr Minéral Cristallogr 98:11–18

    Google Scholar 

  4. Damour MA (1840) Sur quelques minéraux connus sous le nom de quartz résinite. Ann Min 17:202

    Google Scholar 

  5. Sainte-Claire-Deville MH (1862) Reproduction de la Lévyne. C R Acad Sci 54:324–327

    Google Scholar 

  6. Eichhorn H (1858) Ueber die Einwirkung verdünnter Salzlösungen auf Silicate. Ann Phys Chem 181:126–133. https://doi.org/10.1002/andp.18581810907

    Article  Google Scholar 

  7. Gans R (1905) Zeolithe und ähnliche Verbindungen, ihre Konstitution und Bedeutung für Technik und Landwirtschaft. Jahrb der Königlich Preuss Geol Landesanstalt 26:179–211

    Google Scholar 

  8. Gans R (1909) Alumino-silicate or artificial zeolite. US Patent 943,535

    Google Scholar 

  9. Gans R (1906) Konstitution der Zeolithe, ihre Herstellung und technische Verwendung. Jahrb der Königlich Preuss Geol Landesanstalt 27:63–94

    Google Scholar 

  10. Friedel G (1896) Sur quelques proprietés nouvelles des zéolithes. Bull la Société Française Minéralogie 19:94–118

    Google Scholar 

  11. Grandjean MF (1909) Étude optique de l’absorption des vapeurs lourdes par certaines zéolithes. C R Acad Sci 149:866–868

    Google Scholar 

  12. Weigel O, Steinhoff E (1924) IX. Die Aufnahme organischer Flüssigkeitsdämpfe durch Chabasit. Zeitschrift für Krist - Cryst Mater:61. https://doi.org/10.1524/zkri.1924.61.1.125

  13. Pauling L (1930) XXII. The Structure of Sodalite and Helvite. Zeitschrift für Krist - Cryst Mater 74:213–225. https://doi.org/10.1524/zkri.1930.74.1.213

    Article  Google Scholar 

  14. Pauling L (1930) The structure of some sodium and calcium aluminosilicates. Proc Natl Acad Sci 16:453–459. https://doi.org/10.1073/pnas.16.7.453

    Article  Google Scholar 

  15. Taylor WH (1930) I. The structure of analcite (NaAlSi2O6· H2O). Zeitschrift für Krist - Cryst Mater 74:1–19. https://doi.org/10.1524/zkri.1930.74.1.1

    Article  Google Scholar 

  16. McBain JW (1932) V. Sorption by chabasite, other zeolites and permeable crystals. In: The sorption of gases and vapors by solids. G. Routledge & Sons, London

    Google Scholar 

  17. Rees LVC (1998) Richard Maling Barrer. Biogr Mem Fellows R Soc 44:37–49. https://doi.org/10.1098/rsbm.1998.0003

    Article  Google Scholar 

  18. Barrer RM, White EAD (1952) 286. The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates. J Chem Soc:1561–1571. https://doi.org/10.1039/jr9520001561

  19. Barrer RM (1938) The sorption of polar and non-polar gases by zeolites. Proc R Soc A Math Phys Eng Sci 167:392–420. https://doi.org/10.1098/rspa.1938.0138

    Article  Google Scholar 

  20. Barrer RM (1941) Migration in crystal lattices. Trans Faraday Soc 37:590. https://doi.org/10.1039/tf9413700590

    Article  Google Scholar 

  21. Barrer RM (1948) 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. J Chem Soc 127. https://doi.org/10.1039/jr9480000127

  22. Barrer RM, Riley DW (1948) 34. Sorptive and molecular-sieve properties of a new zeolitic mineral. J Chem Soc 133. https://doi.org/10.1039/jr9480000133

  23. Barrer RM, Robinson DJ (1972) The structures of the salt-bearing aluminosilicates, Species P and Q. Z Krist 135:374–390

    Article  Google Scholar 

  24. Meier WM, Kokotailo GT (1965) The crystal structure of synthetic zeolite ZK-5. Z Krist 121:211–219

    Article  Google Scholar 

  25. Parise JB, Shannon RD, Prince E, Cox DE (1983) The crystal structures of the synthetic zeolites (Cs, K)-ZK5 and (Cs, D)-ZK5 determined from neutron powder diffraction data. Z Krist 165:175–190. https://doi.org/10.1524/zkri.1983.165.1-4.175

    Article  Google Scholar 

  26. Barrer RM, Denny PJ, Flanigen EM (1967) Molecular sieve adsorbents. US Patent 3,306,922

    Google Scholar 

  27. Barrer RM, Villiger H (1969) Probable structure of zeolite Omega. J Chem Soc D Chem Commun 659. https://doi.org/10.1039/c29690000659

  28. Barrer RM (1949) Preparation of some crystalline hydrogen zeolites. Nature 164:112–113. https://doi.org/10.1038/164112a0

    Article  Google Scholar 

  29. Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic, London

    Google Scholar 

  30. Flanigen EM, Rabo JA (2001) A tribute to Robert Mitchell Milton, zeolite pioneer (1920–2000). Microporous Mesoporous Mater 47:119–123. https://doi.org/10.1016/S1387-1811(01)00301-8

    Article  Google Scholar 

  31. Breck DW, Eversole WG, Milton RM et al (1956) Crystalline zeolites. i. The properties of a new synthetic zeolite, type A. J Am Chem Soc 78:5963–5972. https://doi.org/10.1021/ja01604a001

    Article  Google Scholar 

  32. Breck DW, Eversole WG, Milton RM (1956) New synthetic crystalline zeolites. J Am Chem Soc 78:2338–2339. https://doi.org/10.1021/ja01591a082

    Article  Google Scholar 

  33. Reed TB, Breck DW (1956) Crystalline zeolites. II. Crystal structure of synthetic zeolite, type A. J Am Chem Soc 78:5972–5977. https://doi.org/10.1021/ja01604a002

    Article  Google Scholar 

  34. Rabo JA, Pickert PE, Boyle JE (1968) Hydrocarbon conversion catalysts. US Patent 3,367,885

    Google Scholar 

  35. Rabo JA, Pickert PE, Boyle JE (1966) Hydrocarbon conversion process with the use of a Y type crystalline zeolite. US Patent 3,236,762

    Google Scholar 

  36. Rabo JA, Pickert PE, Boyle JE (1964) Decationized molecular sieve compositions. US Patent 3,130,006

    Google Scholar 

  37. Breck DW (1974) Zeolite molecular sieves: structure, chemistry and use, Wiley, New York

    Google Scholar 

  38. Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–701. https://doi.org/10.1021/cr020060i

    Article  Google Scholar 

  39. Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82:1–78. https://doi.org/10.1016/j.micromeso.2005.02.016

    Article  Google Scholar 

  40. Mortier WJ (1982) Compilation of extra framework sites in zeolites. Butterworth Scientific Limited, Guildford

    Google Scholar 

  41. Wright PA, Connor JA (2008) Families of microporous framework solids. In: Microporous framework solids. Royal Society of Chemistry, Cambridge, pp 8–78

    Google Scholar 

  42. Milton RM (1963) Water separation from a vapor mixture. US Patent 3,078,635

    Google Scholar 

  43. Sircar S, Myers A (2003) Gas separation by Zeolites. In: Handbook of zeolite science and technology. Marcker Dekker, Inc, New York/Basel

    Google Scholar 

  44. Flanigen EM, Bennett JM, Grose RW et al (1978) Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271:512–516. https://doi.org/10.1038/271512a0

    Article  Google Scholar 

  45. Blasco T, Camblor MA, Corma A et al (1998) Direct synthesis and characterization of hydrophobic aluminum-free Ti−beta zeolite. J Phys Chem B 102:75–88. https://doi.org/10.1021/jp973288w

    Article  Google Scholar 

  46. Lew CM, Sun M, Liu Y et al (2009) Pure-silica-zeolite low-dielectric constant materials. Ordered Porous Solids:335–364. https://doi.org/10.1016/B978-0-444-53189-6.00013-5

  47. Sircar S (2002) Drying processes. In: Handbook of porous solids. Wiley-VCH Verlag GmbH, Weinheim, pp 2533–2567

    Chapter  Google Scholar 

  48. Tagliabue M, Farrusseng D, Valencia S et al (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155:553–566. https://doi.org/10.1016/j.cej.2009.09.010

    Article  Google Scholar 

  49. McCusker LB, Liebau F, Engelhardt G (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Pure Appl Chem 73:381–394

    Article  Google Scholar 

  50. Flanigen EM, Broach RW, Wilson ST (2010) Introduction. In: Kulprathipanja S (ed) Zeolites in industrial separation and catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–26

    Google Scholar 

  51. IZA Structure Commission (2018) IZA Structure Commission. http://www.iza-structure.org/

  52. Denayer JF, Baron GV, Martens JA, Jacobs PA (1998) Chromatographic study of adsorption of n-alkanes on zeolites at high temperatures. J Phys Chem B 102:3077–3081. https://doi.org/10.1021/jp972328t

    Article  Google Scholar 

  53. Daems I, Singh R, Baron G, Denayer J (2007) Length exclusion in the adsorption of chain molecules on chabazite type zeolites. Chem Commun 1316. https://doi.org/10.1039/b615661d

  54. Palomino M, Corma A, Rey F, Valencia S (2010) New insights on CO2−methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFS. Langmuir 26:1910–1917. https://doi.org/10.1021/la9026656

    Article  Google Scholar 

  55. Palomino M, Corma A, Jordá JL et al (2012) Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chem Commun 48:215–217. https://doi.org/10.1039/c1cc16320e

    Article  Google Scholar 

  56. Grajciar L, Čejka J, Zukal A et al (2012) Controlling the adsorption enthalpy of CO2 in zeolites by framework topology and composition. ChemSusChem 5:2011–2022. https://doi.org/10.1002/cssc.201200270

    Article  Google Scholar 

  57. Colllins JJ (1973) Bulk separation of carbon dioxide from natural gas. US Patent 3,751,878

    Google Scholar 

  58. Kumar R (1991) Adsorptive process for producing two gas streams from a gas mixture. US Patent 5,026,406

    Google Scholar 

  59. Barrett P a, Stephenson NA (2011) Adsorption properties of zeolites. In: Martínez Sánchez C, Pérez Pariente J (eds) Zeolites and ordered porous solids: fundamentals and applications. Editorial Universitat Politecnica de Valencia, Valencia, pp 149–180

    Google Scholar 

  60. Zhu W, Kapteijn F, Moulijn JA (2001) A novel adsorbent for the separation of propane/propene mixtures. Stud Surf Sci Catal 135:144. https://doi.org/10.1016/S0167-2991(01)81227-1

    Article  Google Scholar 

  61. Zhu W, Kapteijn F, Moulijn JA et al (2000) Shape selectivity in adsorption on the all-silica DD3R. Langmuir 16:3322–3329. https://doi.org/10.1021/la9914007

    Article  Google Scholar 

  62. Palomino M, Cantín A, Corma A et al (2007) Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem Commun 24:1233–1235. https://doi.org/10.1039/B700358G

    Article  Google Scholar 

  63. Gutiérrez-Sevillano JJ, Calero S, Hamad S et al (2016) Critical role of dynamic flexibility in Ge-containing zeolites: impact on diffusion. Chem – A Eur J 22:10036–10043. https://doi.org/10.1002/chem.201600983

    Article  Google Scholar 

  64. Casty GL, Hall RB, Reyes SC, et al (2004) Separation of 1-butene from C4 feed streams. US Patent App. 2004/0260138 A1

    Google Scholar 

  65. Padin J, Rege SU, Yang RT, Cheng LS (2000) Molecular sieve sorbents for kinetic separation of propane/propylene. Chem Eng Sci 55:4525–4535. https://doi.org/10.1016/S0009-2509(00)00099-3

    Article  Google Scholar 

  66. Cheng LS, Wilson ST (2001) Process for separating propylene from propane. US Patent 6,293,999 B1

    Google Scholar 

  67. Hedin N, DeMartin GJ, Roth WJ et al (2008) PFG NMR self-diffusion of small hydrocarbons in high silica DDR, CHA and LTA structures. Microporous Mesoporous Mater 109:327–334. https://doi.org/10.1016/j.micromeso.2007.05.007

    Article  Google Scholar 

  68. Kärger J, Ruthven DM, Theodorou DN (2012) Diffusion in nanoporous materials. Wiley-VCH Verlag & Co. KGaA, Weinheim

    Book  Google Scholar 

  69. Burton A (2017) Recent trends in the synthesis of high-silica zeolites. Catal Rev Sci Eng 00:1–44. https://doi.org/10.1080/01614940.2017.1389112

    Article  Google Scholar 

  70. Ruthven DM, Reyes SC (2007) Adsorptive separation of light olefins from paraffins. Microporous Mesoporous Mater 104:59–66. https://doi.org/10.1016/j.micromeso.2007.01.005

    Article  Google Scholar 

  71. Voogd P, Van Bekkum H (1989) Diffusion of n-hexane and 3-methylpentane in H-ZSM-5 crystals of various sizes. Stud Surf Sci Catal 46:519–531. https://doi.org/10.1016/S0167-2991(08)61007-1

    Article  Google Scholar 

  72. Milton RM (1959) Molecular sieve adsorbents. US Patent 2,882,244

    Google Scholar 

  73. Milton RM (1959) Molecular sieve adsorbents. US Patent 2,882,243

    Google Scholar 

  74. Yang R (2003) Adsorbents: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  75. Ruthven DM (2011) Molecular sieve separations. Chemie-Ingenieur-Technik 83:44–52. https://doi.org/10.1002/cite.201000145

    Article  Google Scholar 

  76. Skarstrom CW (1960) Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent 2,944,627

    Google Scholar 

  77. Sircar S, Rao MB, Golden TC (1999) Fractionation of air by zeolites. In: Dabrowski A (ed) Adsorption and its applications in industry and environmental protection, Vol I: applications in industry, Elsevier Science B.V., Amsterdam, pp 395–423

    Google Scholar 

  78. Asher WJ, Campbell ML, Epperly WR, Robertson JL (1969) Desorb n-paraffins with ammonia. Hydrocarb Process 48:134–138

    Google Scholar 

  79. Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532:435–437. https://doi.org/10.1038/532435a

    Article  Google Scholar 

  80. Breck DW, Smith JV (1959) Molecular sieves. Sci Am 200:85–96

    Article  Google Scholar 

  81. Flanigen EM (1980) Molecular sieve zeolite technology: the first 25 years. Pure Appl Chem 52:2191–2211

    Article  Google Scholar 

  82. Anderson RA (1977) Molecular sieve adsorbent applications state of the art. In: Katzer JR (ed) Molecular sieves – II. American Chemical Society, Washington, DC, pp 637–649

    Chapter  Google Scholar 

  83. Milton RM (1962) Drying of natural gas by adsorption. US Patent 3,024,867

    Google Scholar 

  84. Milton RM (1963) Sweetening and drying of natural gas. US Patent 3,078,634

    Google Scholar 

  85. Milton RM (1965) Water removal from gas mixtures. US Patent 3,164,453

    Google Scholar 

  86. Sowerby B, Crittenden BD (1988) An experimental comparison of type A molecular sieves for drying the ethanol-water azeotrope. Gas Sep Purif 2:77–83. https://doi.org/10.1016/0950-4214(88)80016-1

    Article  Google Scholar 

  87. Teo WK, Ruthven DM (1986) Adsorption of water from aqueous ethanol using 3-A molecular sieves. Ind Eng Chem Process Des Dev 25:17–21. https://doi.org/10.1021/i200032a003

    Article  Google Scholar 

  88. Ausikaitis JP, Garg DR (1983) Adsorption separation cycle. US Patent 4,373,935

    Google Scholar 

  89. Wang Y, Deckman HW, Wittrig AM, et al (2018) Swing adsorption processes using zeolite structures. US Patent App. 2018/0056235 A1

    Google Scholar 

  90. Burfield DR, Lee KH, Smithers RH (1977) Desiccant efficiency in solvent drying. A reappraisal by application of a novel method for solvent water assay. J Organomet Chem 42:3060–3065. https://doi.org/10.1021/jo00438a024

    Article  Google Scholar 

  91. McKee DW (1964) Separation of an oxygen-nitrogen mixture. US Patent 3,140,933

    Google Scholar 

  92. Chao CC (1989) Process for separating nitrogen from mixtures thereof with less polar substances. US Patent 4,859,217

    Google Scholar 

  93. McRobbie H (1964) Separation of an oxygen-nitrogen mixture. US Patent 3,140,931

    Google Scholar 

  94. McKee DW (1964) Separation of an oxygen-nitrogen mixture. US Patent 3,140,932

    Google Scholar 

  95. Berlin NH (1967) Vacuum cycle adsorption. US Patent 3,313,091

    Google Scholar 

  96. Coe CG, Kuznicki SM (1984) Polyvalent ion exchanged adsorbent for air separation. US Patent 4,481,018

    Google Scholar 

  97. Sircar S, Conrad RR, William J. Am (1985) Binary ion exchanged type X zeolite adsorbent. US Patent 4,557,736

    Google Scholar 

  98. Wu C-W, Kothare MV, Sircar S (2014) Equilibrium adsorption isotherms of pure N2 and O2 and their binary mixtures on LiLSX zeolite: experimental data and thermodynamic analysis. Ind Eng Chem Res 53:7195–7201. https://doi.org/10.1021/ie500268s

    Article  Google Scholar 

  99. Kirner JF (1993) Nitrogen adsorption with highly Li exchanged X-zeolites with low Si/Al ratio. US Patent 5,268,023

    Google Scholar 

  100. Kuznicki SM, Bell VA, Petrovic I, Desai BT (2000) Small-pored crystalline titanium molecular sieve zeolites and their use in gas separation processes. US Patent 6,068,682

    Google Scholar 

  101. Kuznicki SM, Bell VA, Nair S et al (2001) A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412:720–724. https://doi.org/10.1038/35089052

    Article  Google Scholar 

  102. Hirano S, Yoshida S, Harada A et al (2001) Dynamic adsorption properties of Li ion exchanged zeolite adsorbents. In: Kaneko K, Kanoh H, Hanzawa Y (eds) Fundamentals of adsorption, vol 7. IK International, pp 872–879

    Google Scholar 

  103. IPCC (2014) IPCC 2014: Climate change 2014: synthesis report. Switzerland, Geneva

    Google Scholar 

  104. Lincoln SF (2005) Fossil fuels in the 21st century. Ambio 34:621–627

    Article  Google Scholar 

  105. Riboldi L, Bolland O (2017) Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials. Energy Procedia 114:2390–2400. https://doi.org/10.1016/j.egypro.2017.03.1385

    Article  Google Scholar 

  106. Rubin ES, Davison JE, Herzog HJ (2015) The cost of CO2 capture and storage. Int J Greenh Gas Control 40:378–400. https://doi.org/10.1016/j.ijggc.2015.05.018

    Article  Google Scholar 

  107. U.S. National Coal Council (2015) Fossil Forward : Revitalizing CCS

    Google Scholar 

  108. Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447. https://doi.org/10.1016/j.apenergy.2012.09.009

    Article  Google Scholar 

  109. Lee SY, Park SJ (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11. https://doi.org/10.1016/j.jiec.2014.09.001

    Article  Google Scholar 

  110. Hedin N, Chen L, Laaksonen A (2010) Sorbents for CO2 capture from flue gas – aspects from materials and theoretical chemistry. Nanoscale 2:1819. https://doi.org/10.1039/c0nr00042f

    Article  Google Scholar 

  111. Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55. https://doi.org/10.1039/C0EE00064G

    Article  Google Scholar 

  112. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854. https://doi.org/10.1002/cssc.200900036

    Article  Google Scholar 

  113. Boot-Handford ME, Abanades JC, Anthony EJ et al (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189. https://doi.org/10.1039/C3EE42350F

    Article  Google Scholar 

  114. Chang F, Zhou J, Chen P et al (2013) Microporous and mesoporous materials for gas storage and separation: a review. Asia Pac J Chem Eng 8:618–626. https://doi.org/10.1002/apj.1717

    Article  Google Scholar 

  115. Brandani F, Ruthven DM (2004) The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Ind Eng Chem Res 43:8339–8344. https://doi.org/10.1021/ie040183o

    Article  Google Scholar 

  116. Martin-Calvo A, Parra JB, Ania CO, Calero S (2014) Insights on the anomalous adsorption of carbon dioxide in LTA zeolites. J Phys Chem C 118:25460–25467. https://doi.org/10.1021/jp507431c

    Article  Google Scholar 

  117. Montanari T, Finocchio E, Salvatore E et al (2011) CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents. Energy 36:314–319. https://doi.org/10.1016/j.energy.2010.10.038

    Article  Google Scholar 

  118. Wang Y, LeVan MD (2010) Adsorption equilibrium of binary mixtures of carbon dioxide and water vapor on zeolites 5A and 13X. J Chem Eng Data 55:3189–3195. https://doi.org/10.1021/je100053g

    Article  Google Scholar 

  119. Cheung O, Hedin N (2014) Zeolites and related sorbents with narrow pores for CO2 separation from flue gas. RSC Adv 4:14480–14494. https://doi.org/10.1039/C3RA48052F

    Article  Google Scholar 

  120. Gómez-Álvarez P, Calero S (2016) Highly selective zeolite topologies for flue gas separation. Chem – A Eur J 22:18705–18708. https://doi.org/10.1002/chem.201604009

    Article  Google Scholar 

  121. Pham TD, Hudson MR, Brown CM, Lobo RF (2014) Molecular basis for the high CO2 adsorption capacity of chabazite zeolites. ChemSusChem 7:3031–3038. https://doi.org/10.1002/cssc.201402555

    Article  Google Scholar 

  122. Pham TD, Xiong R, Sandler SI, Lobo RF (2014) Experimental and computational studies on the adsorption of CO2 and N2 on pure silica zeolites. Microporous Mesoporous Mater 185:157–166. https://doi.org/10.1016/j.micromeso.2013.10.030

    Article  Google Scholar 

  123. Kim J, Abouelnasr M, Lin LC, Smit B (2013) Large-scale screening of zeolite structures for CO2 membrane separations. J Am Chem Soc 135:7545–7552. https://doi.org/10.1021/ja400267g

    Article  Google Scholar 

  124. Pham TD, Liu Q, Lobo RF (2013) Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. Langmuir 29:832–839. https://doi.org/10.1021/la304138z

    Article  Google Scholar 

  125. Miyamoto M, Fujioka Y, Yogo K (2012) Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure. J Mater Chem 22:20186. https://doi.org/10.1039/c2jm34597h

    Article  Google Scholar 

  126. Himeno S, Tomita T, Suzuki K et al (2007) Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind Eng Chem Res 46:6989–6997. https://doi.org/10.1021/ie061682n

    Article  Google Scholar 

  127. Couck S, Lefevere J, Mullens S et al (2017) CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith. Chem Eng J 308:719–726. https://doi.org/10.1016/j.cej.2016.09.046

    Article  Google Scholar 

  128. Fischer M (2017) Computational evaluation of aluminophosphate zeotypes for CO2/N2 separation. Phys Chem Chem Phys 19:22801–22812. https://doi.org/10.1039/C7CP03841K

    Article  Google Scholar 

  129. Liu Q, Cheung NCO, Garcia-Bennett AE, Hedin N (2011) Aluminophosphates for CO2 separation. ChemSusChem 4:91–97. https://doi.org/10.1002/cssc.201000256

    Article  Google Scholar 

  130. Cheung O, Liu Q, Bacsik Z, Hedin N (2012) Silicoaluminophosphates as CO2 sorbents. Microporous Mesoporous Mater 156:90–96. https://doi.org/10.1016/j.micromeso.2012.02.003

    Article  Google Scholar 

  131. MolecularGate (2018) Molecular Gate® Adsorption Technology. http://www.moleculargate.com/

  132. Du T, Fang X, Liu L et al (2018) An optimal trapdoor zeolite for exclusive admission of CO2 at industrial carbon capture operating temperatures. Chem Commun 54:3134–3137. https://doi.org/10.1039/C8CC00634B

    Article  Google Scholar 

  133. Shang J, Li G, Singh R et al (2012) Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites. J Am Chem Soc 134:19246–19253. https://doi.org/10.1021/ja309274y

    Article  Google Scholar 

  134. Lozinska MM, Mowat JPS, Wright PA et al (2014) Cation gating and relocation during the highly selective “trapdoor” adsorption of CO2 on univalent cation forms of zeolite Rho. Chem Mater 26:2052–2061. https://doi.org/10.1021/cm404028f

    Article  Google Scholar 

  135. Wang J, Wang S, Xin Q, Li Y (2017) Perspectives on water-facilitated CO2 capture materials. J Mater Chem A 5:6794–6816. https://doi.org/10.1039/C7TA01297G

    Article  Google Scholar 

  136. Jeong W, Kim J (2016) Understanding the mechanisms of CO2 adsorption enhancement in pure silica zeolites under humid conditions. J Phys Chem C 120:23500–23510. https://doi.org/10.1021/acs.jpcc.6b06571

    Article  Google Scholar 

  137. World Energy Council (2017) Full report: the role of natural gas (Perspective from the 2016 world energy scenarios)

    Google Scholar 

  138. Saha D, Grappe HA, Chakraborty A, Orkoulas G (2016) Postextraction separation, on-board storage, and catalytic conversion of methane in natural gas: a review. Chem Rev. https://doi.org/10.1021/acs.chemrev.5b00745

  139. Solar C, Blanco A, Vallone A, Sapag K (2010) Adsorption of methane in porous materials as the basis for the storage of natural gas. Nat Gas:205–245. https://doi.org/10.5772/9846

  140. Kidnay AJ, Parrish WR (2006) Fundamentals of natural gas processing. Taylor & Francis Group, Boca Raton/London/New York

    Google Scholar 

  141. Energy Information Administration (1997) Renewable energy annual 1996

    Google Scholar 

  142. Flores RM (1998) Coalbed methane: from hazard to resource. Int J Coal Geol 35:3–26. https://doi.org/10.1016/S0166-5162(97)00043-8

    Article  Google Scholar 

  143. Kim AG (1973) The composition of coalbed gas (Report of investigations 7762)

    Google Scholar 

  144. Ripepi N, Louk K, Amante J et al (2017) Determining coalbed methane production and composition from individual stacked coal seams in a multi-zone completed gas well. Energies 10:1533. https://doi.org/10.3390/en10101533

    Article  Google Scholar 

  145. Li Q, Ju Y, Bao Y et al (2015) Composition, origin, and distribution of coalbed methane in the Huaibei Coalfield, China. Energy Fuel 29:546–555. https://doi.org/10.1021/ef502132u

    Article  Google Scholar 

  146. Yang Y, Burke N, Ali S et al (2017) Experimental studies of hydrocarbon separation on zeolites, activated carbons and MOFs for applications in natural gas processing. RSC Adv 7:12629–12638. https://doi.org/10.1039/C6RA25509D

    Article  Google Scholar 

  147. Rufford TE, Smart S, Watson GCY et al (2012) The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J Pet Sci Eng 94–95:123–154. https://doi.org/10.1016/j.petrol.2012.06.016

    Article  Google Scholar 

  148. García EJ, Pérez-Pellitero J, Pirngruber GD et al (2014) Tuning the adsorption properties of zeolites as adsorbents for CO2 separation: Best compromise between the working capacity and selectivity. Ind Eng Chem Res 53:9860–9874. https://doi.org/10.1021/ie500207s

    Article  Google Scholar 

  149. Sircar S, Kumar R, Koch WR, VanSloun J (1988) Recovery of methane from land fill gas. US Patent 4,770,676

    Google Scholar 

  150. Seery MW (1999) Bulk separation of carbon dioxide from methane using natural clinoptilolite. US Patent 5,938,819

    Google Scholar 

  151. Pourmahdi Z, Maghsoudi H (2017) Adsorption isotherms of carbon dioxide and methane on CHA-type zeolite synthesized in fluoride medium. Adsorption 23:799–807. https://doi.org/10.1007/s10450-017-9894-1

    Article  Google Scholar 

  152. Pham TD, Lobo RF (2016) Adsorption equilibria of CO2 and small hydrocarbons in AEI-, CHA-, STT-, and RRO-type siliceous zeolites. Microporous Mesoporous Mater 236:100–108. https://doi.org/10.1016/j.micromeso.2016.08.025

    Article  Google Scholar 

  153. Su X, Tian P, Fan D et al (2013) Synthesis of DNL-6 with a high concentration of Si (4 Al) environments and its application in CO2 separation. ChemSusChem 6:911–918. https://doi.org/10.1002/cssc.201200907

    Article  Google Scholar 

  154. Bacsik Z, Cheung O, Vasiliev P, Hedin N (2016) Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Appl Energy 162:613–621. https://doi.org/10.1016/j.apenergy.2015.10.109

    Article  Google Scholar 

  155. First EL, Hasan MMF, Floudas CA (2014) Discovery of novel zeolites for natural gas purification through combined material screening and process optimization. AIChE J 60:1767–1785. https://doi.org/10.1002/aic.14441

    Article  Google Scholar 

  156. Dolan WB, Butwell KF (2002) Selective removal of nitrogen from natural gas by pressure swing adsorption. US Patent 6,444,012 B1

    Google Scholar 

  157. Habgood HW (1958) The kinetics of molecular sieve action. sorption of nitrogen–methane mixtures by linde molecular sieve 4A. Can J Chem 36:1384–1397. https://doi.org/10.1139/v58-204

    Article  Google Scholar 

  158. Habgood HW (1958) Removal of nitrogen from natural gas. US Patent 2,843,219

    Google Scholar 

  159. Frankiewicz TC, Donnelly RG (1983) Methane/nitrogen gas separation over the zeolite clinoptilolite by the selective adsorption. In: Industrial gas separations. American Chemical Society, Washington, DC, pp 213–233

    Chapter  Google Scholar 

  160. Chao CC (1990) Selective adsorption on magnesium-containing clinoptilolites. US Patent 4,964,889

    Google Scholar 

  161. Mitariten M (2001) New technology improves nitrogen-removal economics. Oil Gas J 99:42–44

    Google Scholar 

  162. Melo DMA, De Souza JR, Melo MAF et al (2006) Evaluation of the zinox and zeolite materials as adsorbents to remove H2S from natural gas. Colloids Surfaces A Physicochem Eng Asp 272:32–36. https://doi.org/10.1016/j.colsurfa.2005.07.005

    Article  Google Scholar 

  163. Ryzhikov A, Hulea V, Tichit D et al (2011) Methyl mercaptan and carbonyl sulfide traces removal through adsorption and catalysis on zeolites and layered double hydroxides. Appl Catal A Gen 397:218–224. https://doi.org/10.1016/j.apcata.2011.03.002

    Article  Google Scholar 

  164. dos Santos JPL, de Carvalho Lima Lobato AK, Moraes C et al (2016) Comparison of different processes for preventing deposition of elemental sulfur in natural gas pipelines: a review. J Nat Gas Sci Eng 32:364–372. https://doi.org/10.1016/j.jngse.2016.04.045

    Article  Google Scholar 

  165. Bülow M (2016) Comments on the publication Use of zeolites for the removal of H2S: A mini-review by Mehtap Ozekmekci, Gozde Salkic and Mehmet Ferdi Fellah, Fuel Processing Technology, 139, 49-60, November 2015. Fuel Process Technol 142:396. https://doi.org/10.1016/j.fuproc.2015.10.031

    Article  Google Scholar 

  166. Aitani AM (1993) Sour natural gas drying. Hydrocarb Process 72:67–73

    Google Scholar 

  167. Shah MS, Tsapatsis M, Siepmann JI (2015) Monte Carlo simulations probing the adsorptive separation of hydrogen sulfide/methane mixtures using all-silica zeolites. Langmuir 31:12268–12278. https://doi.org/10.1021/acs.langmuir.5b03015

    Article  Google Scholar 

  168. Shah MS, Tsapatsis M, Siepmann JI (2016) Identifying optimal zeolitic sorbents for sweetening of highly sour natural gas. Angew Chem Int Ed 55:5938–5942. https://doi.org/10.1002/anie.201600612

    Article  Google Scholar 

  169. Maghsoudi H, Soltanieh M, Bozorgzadeh H, Mohamadalizadeh A (2013) Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: Comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption 19:1045–1053. https://doi.org/10.1007/s10450-013-9528-1

    Article  Google Scholar 

  170. Rezaei S, Tavana A, Sawada JA et al (2012) Novel copper-exchanged titanosilicate adsorbent for low temperature H2S removal. Ind Eng Chem Res 51:12430–12434. https://doi.org/10.1021/ie300244y

    Article  Google Scholar 

  171. Rezaei S, Jarligo MOD, Wu L, Kuznicki SM (2015) Breakthrough performances of metal-exchanged nanotitanate ETS-2 adsorbents for room temperature desulfurization. Chem Eng Sci 123:444–449. https://doi.org/10.1016/j.ces.2014.11.041

    Article  Google Scholar 

  172. Magnowski NBK, Avila AM, Lin CCH et al (2011) Extraction of ethane from natural gas by adsorption on modified ETS-10. Chem Eng Sci 66:1697–1701. https://doi.org/10.1016/j.ces.2011.01.005

    Article  Google Scholar 

  173. Arruebo M, Coronas J, Menéndez M, Santamaría J (2001) Separation of hydrocarbons from natural gas using silicalite membranes. Sep Purif Technol 25:275–286. https://doi.org/10.1016/S1383-5866(01)00054-5

    Article  Google Scholar 

  174. U.S. Department of Energy (2018) Alternative Fuels Data Center. Fuel properties comparison. https://www.afdc.energy.gov/fuels/fuel_properties.php

  175. ARPA-E (2012) DE-FOA-0000672: methane opportunities for vehicular energy. https://arpa-e-foa.energy.gov/Default.aspx?Search=DE-FOA-0000672

  176. Munson RA, Clifton RA, States United, Center. CPMR (1971) Natural gas storage with zeolites. 9p.

    Google Scholar 

  177. Makal TA, Li J-R, Lu W, Zhou H-C (2012) Methane storage in advanced porous materials. Chem Soc Rev 41:7761. https://doi.org/10.1039/c2cs35251f

    Article  Google Scholar 

  178. Düren T, Sarkisov L, Yaghi OM, Snurr RQ (2004) Design of new materials for methane storage. Langmuir 20:2683–2689. https://doi.org/10.1021/la0355500

    Article  Google Scholar 

  179. Zhang M, Li H, Perry Z, Zhou H-C (2014) Gas storage in metal-organic frameworks. Encycl Inorg Bioinorg Chem:1–19. https://doi.org/10.1002/9781119951438.eibc2210

  180. Ahmed DS, El-hiti GA, Yousif E et al (2018) Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. J Polym Res 25(75):1–21

    Google Scholar 

  181. Alcañiz-Monge J, De La Casa-Lillo MA, Cazorla-Amorós D, Linares-Solano A (1997) Methane storage in activated carbon fibres. Carbon 35:291–297 . doi: https://doi.org/10.1016/S0008-6223(96)00156-X

  182. Rejifu A, Noguchi H, Ohba T et al (2009) Adsorptivities of extremely high surface area activated carbon fibres for CH4 and H2. Adsorpt Sci Technol 27:877–882. https://doi.org/10.1260/0263-6174.27.9.877

    Article  Google Scholar 

  183. Yuguo W, Cemal E, Anwar K, Rashid O (2011) Experimental and theoretical study of methane adsorption on granular activated carbons. AIChE J 58:782–788. https://doi.org/10.1002/aic.12611

    Article  Google Scholar 

  184. Sun Y, Liu C, Su W et al (2009) Principles of methane adsorption and natural gas storage. Adsorption 15:133–137. https://doi.org/10.1007/s10450-009-9157-x

    Article  Google Scholar 

  185. Peng Y, Krungleviciute V, Eryazici I et al (2013) Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135:11887–11894. https://doi.org/10.1021/ja4045289

    Article  Google Scholar 

  186. Simon CM, Kim J, Gomez-Gualdron DA et al (2015) The materials genome in action: identifying the performance limits for methane storage. Energy Environ Sci 8:1190–1199. https://doi.org/10.1039/C4EE03515A

    Article  Google Scholar 

  187. Kishima M, Mizuhata H, Okubo T (2006) Effects of confinement on the adsorption behavior of methane in high-silica zeolites. J Phys Chem B 110:13889–13896. https://doi.org/10.1021/jp0621981

    Article  Google Scholar 

  188. Zhang SY, Talu O, Hayhurst DT (1991) High-pressure adsorption of methane in zeolites NaX, MgX, CaX, SrX and BaX. J Phys Chem 95:1722–1726. https://doi.org/10.1021/j100157a044

    Article  Google Scholar 

  189. Talu O, Zhang SY, Hayhurst DT (1993) Effect of cations on methane adsorption by NaY, MgY, CaY, SrY, and BaY zeolites. J Phys Chem 97:12894–12898. https://doi.org/10.1021/j100151a043

    Article  Google Scholar 

  190. Tagliabue M, Rizzo C, Onorati NB et al (2012) Regenerability of zeolites as adsorbents for natural gas sweetening: a case-study. Fuel 93:238–244. https://doi.org/10.1016/j.fuel.2011.08.051

    Article  Google Scholar 

  191. Song Z, Nambo A, Tate KL et al (2016) Nanovalved adsorbents for CH4 storage. Nano Lett 16:3309–3313. https://doi.org/10.1021/acs.nanolett.6b00919

    Article  Google Scholar 

  192. Eldridge RB (1993) Olefin/paraffin separation technology: a review. Ind Eng Chem Res 32:2208–2212. https://doi.org/10.1021/ie00022a002

    Article  Google Scholar 

  193. Grande CA, Gigola C, Rodrigues AE (2003) Propane-propylene binary adsorption on zeolite 4A. Adsorption 9:321–329. https://doi.org/10.1023/A:1026223914143

    Article  Google Scholar 

  194. Granato MA, Vlugt TJH, Rodrigues AE (2007) Molecular simulation of propane-propylene binary adsorption equilibrium in zeolite 13X. Ind Eng Chem Res 46:7239–7245. https://doi.org/10.1021/ie0705655

    Article  Google Scholar 

  195. Mofarahi M, Salehi SM (2013) Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 19:101–110. https://doi.org/10.1007/s10450-012-9423-1

    Article  Google Scholar 

  196. Reyes SC, Olson DH, Liu H, et al (2005) Light hydrocarbon separation using 8-member ring zeolites. US Patent App. 2005/0096494 A1

    Google Scholar 

  197. Yang RT, Kikkinides ES (1995) New sorbents for olefin/paraffin separations by adsorption via π-complexation. AIChE J 41:509–517

    Article  Google Scholar 

  198. Aguado S, Bergeret G, Daniel C, Farrusseng D (2012) Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. J Am Chem Soc 134:14635–14637. https://doi.org/10.1021/ja305663k

    Article  Google Scholar 

  199. Van Miltenburg A, Zhu W, Kapteijn F, Moulijn JA (2006) Adsorptive separation of light olefin/paraffin mixtures. Chem Eng Res Des 84:350–354. https://doi.org/10.1205/cherd05021

    Article  Google Scholar 

  200. Cen PL (1990) Adsorption uptake curves of ethylene on Cu(I)-NaY zeolite. AIChE J 36:789–793. https://doi.org/10.1002/aic.690360518

    Article  Google Scholar 

  201. Richter M, Roost U, Lohse U (1993) Molecular sieving of n-butenes by microporous silicoaluminophosphates. J Chem Soc Chem Commun 17:1616–1617. https://doi.org/10.1039/c39930001616

    Article  Google Scholar 

  202. Rege SU, Yang RT (2002) Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states. Chem Eng Sci 57:1139–1149. https://doi.org/10.1016/S0009-2509(01)00440-7

    Article  Google Scholar 

  203. Zhu W, Kapteijn F, Moulijn JA (1999) Shape selectivity in the adsorption of propane / propene on the all-silica DD3R. Chem Commun 24:2453–2454

    Article  Google Scholar 

  204. Olson DH, Camblor MA, Villaescusa LA, Kuehl GH (2004) Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous Mesoporous Mater 67:27–33. https://doi.org/10.1016/j.micromeso.2003.09.025

    Article  Google Scholar 

  205. Olson DH (2002) Light hydrocarbon separation using 8-member ring zeolites. US Patent 6,488,741 B2

    Google Scholar 

  206. Barrett PA, Boix T, Puche M et al (2003) ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separations. Chem Commun 17:2114–2115. https://doi.org/10.1039/B306440A

    Article  Google Scholar 

  207. Gutierrez-Sevillano JJ, Dubbeldam D, Rey F et al (2010) Analysis of the ITQ-12 zeolite performance in propane-propylene separations using a combination of experiments and molecular simulations. J Phys Chem C 114:14907–14914. https://doi.org/10.1021/Jp101744k

    Article  Google Scholar 

  208. Zhu W, Kapteijn F, Moulijn JA (1999) Shape selectivity in the adsorption of propane / propene on the all-silica DD3R. Chem Commun:2453–2454. https://doi.org/10.1039/a906465f

  209. Tijsebaert B, Varszegi C, Gies H et al (2008) Liquid phase separation of 1-butene from 2-butenes on all-silica zeolite RUB-41. Chem Commun:2480–2482. https://doi.org/10.1039/b719463c

  210. Corbin DR, Abrams L, Jones GA et al (1990) Flexibility of the zeolite RHO framework. In situ X-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO. J Am Chem Soc 112:4821–4830. https://doi.org/10.1021/ja00168a029

    Article  Google Scholar 

  211. Calligaris M, Mezzetti A, Nardin G, Randaccio L (1984) Cation sites and framework deformations in dehydrated chabazites. Crystal structure of a fully silver-exchanged chabazite. Zeolites 4:323–328. https://doi.org/10.1016/0144-2449(84)90007-1

    Article  Google Scholar 

  212. Fischer RX, Kahlenberg V, Lengauer CL, Tillmanns E (2008) Thermal behavior and structural transformation in the chabazite-type zeolite willhendersonite, KCaAl3Si3O12·5H2O. Am Mineral 93:1317–1325. https://doi.org/10.2138/am.2008.2745

    Article  Google Scholar 

  213. Müller JA, Conner WC (1993) Cyclohexane in ZSM-5. 1. FTIR and X-ray studies. J Phys Chem 97:1451–1454. https://doi.org/10.1021/j100109a033

    Article  Google Scholar 

  214. García-Pérez E, Parra JB, Ania CO et al (2008) Unraveling the argon adsorption processes in MFI-type zeolite. J Phys Chem C 112:9976–9979. https://doi.org/10.1021/jp803753h

    Article  Google Scholar 

  215. Hay DG, Jaeger H, West GW (1985) Examination of the monoclinic/orthorhombic transition in silicalite using XRD and silicon NMR. J Phys Chem 89:1070–1072. https://doi.org/10.1021/j100253a005

    Article  Google Scholar 

  216. Pera-Titus M, Palomino M, Valencia S, Rey F (2014) Thermodynamic analysis of framework deformation in Na, Cs-RHO zeolite upon CO2 adsorption. Phys Chem Chem Phys 16:24391–24400. https://doi.org/10.1039/C4CP03409K

    Article  Google Scholar 

  217. Balestra SRG, Hamad S, Ruiz-Salvador AR et al (2015) Understanding nanopore window distortions in the reversible molecular valve zeolite RHO. Chem Mater 27:5657–5667. https://doi.org/10.1021/acs.chemmater.5b02103

    Article  Google Scholar 

  218. Min JG, Luna-Triguero A, Byun Y et al (2018) Stepped propane adsorption in pure-silica ITW zeolite. Langmuir 34:4774–4779. https://doi.org/10.1021/acs.langmuir.8b00628

    Article  Google Scholar 

  219. Bereciartua PJ, Cantín Á, Corma A, et al (2017) Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science (80- ) 358:1068–1071. https://doi.org/10.1126/science.aao0092

  220. Jiménez-Cruz F, Laredo GC (2004) Molecular size evaluation of linear and branched paraffins from the gasoline pool by DFT quantum chemical calculations. Fuel 83:2183–2188. https://doi.org/10.1016/j.fuel.2004.06.010

    Article  Google Scholar 

  221. Barrer RM (1942) Fractionation of mixtures of hydrocarbons. US Patent 2,306,610

    Google Scholar 

  222. Barrer RM, Belchetz L (1945) Separation of mixtures using zeolites as molecular sieves. Parts I, II and III. J Soc Chem Ind 64:130–135. https://doi.org/10.1002/jctb.5000630501

    Article  Google Scholar 

  223. Denayer JFM, Baron GV (1997) Adsorption of normal and branched paraffins in faujasite zeolites NaY, HY, Pt/NaY and USY. Adsorption 3:251–265. https://doi.org/10.1007/BF01653628

    Article  Google Scholar 

  224. Águeda VI, Uguina MA, Delgado JA et al (2017) Equilibrium and kinetics of adsorption of high molecular weight n-paraffins on a calcium LTA molecular sieve. Adsorption 23:257–269. https://doi.org/10.1007/s10450-016-9846-1

    Article  Google Scholar 

  225. Daems I, Leflaive P, Méthivier A et al (2006) Influence of Si:Al-ratio of faujasites on the adsorption of alkanes, alkenes and aromatics. Microporous Mesoporous Mater 96:149–156. https://doi.org/10.1016/j.micromeso.2006.06.029

    Article  Google Scholar 

  226. IsoSiv (1962) IsoSiv process operates commercially. Chem Eng News 40:59–63. https://doi.org/10.1021/cen-v040n017.p059

    Article  Google Scholar 

  227. Asher WJ, Epperly WR (1962) Hydrocarbon separation process. US Patent 3,070,542

    Google Scholar 

  228. Kulprathipanja S, Johnson JA (2002) Liquid separations. In: Handbook of porous solids. Wiley-VCH Verlag GmbH, Weinheim, pp 2568–2622

    Chapter  Google Scholar 

  229. Kulprathipanja S, Neuzil RW (1983) Process for separating normal paraffins using silicalite adsorbent. US Patent 4,367,364

    Google Scholar 

  230. Kulprathipanja S, Neuzil RW (1984) Low temperature process for separating hydrocarbons. US Patent 4,455,444

    Google Scholar 

  231. Neuzil RW (1972) Selectively adsorbing multibranched paraffins. US Patent 3,706,813

    Google Scholar 

  232. Owaysi FA, Al-Ameeri RS (1985) Purification of liquid paraffins. EP 0 164 905 A1

    Google Scholar 

  233. Hartline FF (1979) Lowering the cost of alcohol. Science (80–) 206:41–42. https://doi.org/10.1126/science.206.4414.41

  234. Kumar S, Singh N, Prasad R (2010) Anhydrous ethanol: a renewable source of energy. Renew Sust Energ Rev 14:1830–1844. https://doi.org/10.1016/j.rser.2010.03.015

    Article  Google Scholar 

  235. Harvey AP, Lee JGM (2012) Intensification of biofuel production. In: Comprehensive renewable energy. Elsevier Ltd, Oxford, pp 205–215

    Chapter  Google Scholar 

  236. Milestone NB, Bibby DM (1981) Concentration of alcohols by adsorption on silicalite. J Chem Technol Biotechnol 31:732–736. https://doi.org/10.1002/jctb.503310198

    Article  Google Scholar 

  237. Maddox IS (1982) Use of silicalite for the adsorption of n-butanol from fermentation liquors. Biotechnol Lett 4:759–760. https://doi.org/10.1007/BF00134673

    Article  Google Scholar 

  238. Zhang K, Lively RP, Noel JD et al (2012) Adsorption of water and ethanol in MFI-type zeolites. Langmuir 28:8664–8673. https://doi.org/10.1021/la301122h

    Article  Google Scholar 

  239. Farzaneh A, Zhou M, Antzutkin ON et al (2016) Adsorption of butanol and water vapors in silicalite-1 films with a low defect density. Langmuir 32:11789–11798. https://doi.org/10.1021/acs.langmuir.6b03326

    Article  Google Scholar 

  240. Van der Perre S, Gelin P, Claessens B et al (2017) Intensified biobutanol recovery by using zeolites with complementary selectivity. ChemSusChem 10:2968–2977. https://doi.org/10.1002/cssc.201700667

    Article  Google Scholar 

  241. Dagdougui H, Sacile R, Bersani C, Ouammi A (2018) Hydrogen production and current technologies. In: Hydrogen infrastructure for energy applications. Elsevier, London, pp 7–21

    Chapter  Google Scholar 

  242. Ogden JM (1999) Prospects for building a hydrogen energy infrastructure. Annu Rev Energy Environ 24:227–279. https://doi.org/10.1146/annurev.energy.24.1.227

    Article  Google Scholar 

  243. Sircar S, Golden TC (2000) Purification of hydrogen by pressure swing adsorption. Sep Sci Technol 35:667–687. https://doi.org/10.1081/SS-100100183

    Article  Google Scholar 

  244. Fuderer A, Rudelstorfer E (1976) Selective adsorption process. US Patent 3,986,849

    Google Scholar 

  245. Sircar S (1979) Separation of multicomponent gas mixtures. US Patent 4,171,206

    Google Scholar 

  246. Ackley MW, Barrett PA (2008) Silver-exchanged zeolites and methods of manufacture therefor. US Patent 7,455,718 B2

    Google Scholar 

Download references

Acknowledgements

The authors thank the Spanish Ministry of Economy, Industry and Competitiveness for its funding by means of the projects (MAT2015-71842-P MINECO/FEDER and Severo Ochoa SEV-2016-0683). EPB acknowledges the Spanish Ministry of Education, Culture and Sport for the FPU grant FPU15/01602.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Botella, E., Palomino, M., Valencia, S., Rey, F. (2019). Zeolites and Other Adsorbents. In: Kaneko, K., Rodríguez-Reinoso, F. (eds) Nanoporous Materials for Gas Storage. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3504-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3504-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3503-7

  • Online ISBN: 978-981-13-3504-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics