Skip to main content

Microbe Relationships with Phytoplasmas in Plants and Insects

  • Chapter
  • First Online:
Phytoplasmas: Plant Pathogenic Bacteria - II

Abstract

The hosts of phytoplasmas, i.e. plants and insect vectors, are inhabited by diverse microorganisms having interactions spanning from mutualism to parasitism. When the pathogens colonize a host, they may thus be exposed to diverse interactions with complex microbial communities. These relations are still poorly recognized for phytoplasmas, even though many beneficial or harmful interactions have been described for other plant pathogens. The knowledge on traits of microbial relations involving phytoplasmas in insects and plants is regarded as a valuable tool for designing new control methods against the diseases associated with these pathogens, by displaying direct antagonistic activities, altering the vector fitness or competence for transmission, or promoting plant immune response or growth. In insect vectors, which mainly host bacterial associates, with few yeast-like symbionts, direct interactions with phytoplasmas were described for bacteria of the genera Frauteria in Hyalesthes obsoletus and Asaia in Euscelidius variegatus. In plants, the most studied systems are grapevine, apple and coconut palm, along with model organisms such as Catharanthus roseus and in vitro micropropagated plants. Here, many bacteria, mainly of the genera Pseudomonas, Burkholderia and Paenibacillus, as well as the fungal endophyte Epicoccum nigrum, were shown to inhibit phytoplasma growth and related symptoms in the plant hosts. Overall, the recent advances concerning the knowledge on microbial symbioses in phytoplasma plant and insect hosts can consistently support future research regarding the phytoplasma infection process, and eventually drive new control strategies against phytoplasma-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alma A, Daffonchio D, Gonella E, Raddadi N (2010) Microbial symbionts of Auchenorrhyncha transmitting phytoplasmas: a resource for symbiotic control of phytoplasmoses. In: Phytoplasmas: Genomes, Plant Hosts and Vectors. Eds Weintraub PG, Jones P. CABI, Wallingford, United Kingdom, 272–292 pp.

    Google Scholar 

  • Alma A, Tedeschi R, Lessio F, Picciau L, Gonella E, Ferracini C (2015) Insect vectors of plant pathogenic Mollicutes in the Euro-Mediterranean region. Phytopathogenic Mollicutes 5, 53–73.

    Google Scholar 

  • Ammar E-D, Gasparich GE, Hall DG, Hogenhout SA (2011) Spiroplasma-like organisms closely associated with the gut in five leafhopper species (Hemiptera: Cicadellidae). Archives of Microbiology 193, 35–44.

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews 21, 51–66.

    Google Scholar 

  • Arora J, Ramawat KG (2017) An introduction to endophytes. Endophytes Biology and Biotechnology 1, 1–23.

    Google Scholar 

  • Azevedo JL, Araújo WL, Lacava PT (2016) The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants. Genetics and Molecular Biology 39, 476–491.

    Google Scholar 

  • Bacon CW, White JF (2016) Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis 68, 87–98.

    Article  CAS  Google Scholar 

  • Barelli L, Moonjely S, Behie SW, Bidochka MJ (2016) Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Molecular Biology 90, 657–664.

    Google Scholar 

  • Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual Review of Microbiology 59, 155–189.

    Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Canadian Journal of Microbiology 41, 46–53.

    Google Scholar 

  • Bennet GM, Moran NA (2013) Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biology and Evolution 5, 1675–1688.

    Google Scholar 

  • Bertaccini A (2007) Phytoplasmas: diversity, taxonomy, and epidemiology. Frontiers in Bioscience 12, 673–689.

    Google Scholar 

  • Bouchon D, Cordaux R, Grève P (2011) Rickettsiella, intracellular pathogens of arthropods. In: Manipulative Tenants: Bacteria Associated with Arthropods. Eds Zchori-Fein E, Bourtzis K. Frontiers in Microbiology series. CRC Press, Boca Raton, United States of America, 127–148 pp.

    Google Scholar 

  • Bourtzis K, Crook S, Daffonchio D, Durvasula R, Hanboonsong Y, Infante F, Lacava PT, Miller TA, Vega FE (2012) International entomology. American Entomology 58, 234–246.

    Google Scholar 

  • Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M, Daffonchio D, Bianco PA (2009) Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. Journal of Microbiology 47, 393–401.

    Google Scholar 

  • Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F, Brusetti L, Bianco PA (2011) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Applied and Environmental Microbiology 77, 5018–5022.

    Google Scholar 

  • Bulgari D, Bozkurt AI, Casati P, Caglayan K, Quaglino F, Bianco PA (2012) Endophytic bacterial community living in roots of healthy and ‘Candidatus Phytoplasma mali’-infected apple (Malus domestica, Borkh.) trees. Antony von Leeuwenhoek 102, 677–687.

    Article  Google Scholar 

  • Bulgari D, Casati P, Quaglino F, Bianco PA (2014) Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiology 14, 198.

    Google Scholar 

  • Bulgari D, Bergna A, Albanese D, Casati P, Donati C, Bianco PA, Campisano A (2015) Bacterial endophytic communities during phytoplasmas infection highlight taxa associated with plant health. International Symposium Microbe-Assisted Crop Production – Opportunities, Challenges & Needs. Schloss Schönbrunn Tagungszentrum Apothekertrakt/Vienna, Austria.

    Google Scholar 

  • Camerota C, Raddadi N, Pizzinat A, Gonella E, Crotti E, Tedeschi R, Mozes-Daube N, Ember I, Acs Z, Kolber M, Zchori-Fein E, Daffonchio D, Alma A (2012) Incidence of ‘Candidatus Liberibacter europaeus’ and phytoplasmas in Cacopsylla species (Hemiptera: Psyllidae) and their host/shelter plants. Phytoparasitica 40, 213–221.

    Article  Google Scholar 

  • Campisano A, Antonielli L, Pancher M, Yousaf S, Pindo M, Pertot I (2014) Bacterial endophytic communities in the grapevine depend on pest management. Plos One 9, e112763.

    Article  Google Scholar 

  • Capone A, Ricci I, Damiani C, Mosca M, Rossi P, Scuppa P, Crotti E, Epis S, Angeletti M, Valzano M, Sacchi L, Bandi C, Daffonchio D, Mandrioli M, Favia G (2013) Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control. Parasites & Vectors 6, 182.

    Google Scholar 

  • Chen DJ, Hou RF (2001) Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stal (Homoptera, Delphacidae). Tissue and Cell 33, 273–279.

    Google Scholar 

  • Cheung WW-K, Purcell AH (1999) Invasion of bacteroids and BEV bacterium into oocytes of the leafhopper Euscelidius variegatus Kirschbaum (Homoptera: Cicadellidae): an electron microscopic study. Zoological Studies 38, 69–75.

    Google Scholar 

  • Chuche J, Auricau-Bouvery N, Danet J-L, Thiéry D (2017) Use the insiders: could insect facultative symbionts control vector-borne diseases? Journal of Pest Science 90, 51–68.

    Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecology 62, 188–197.

    Google Scholar 

  • Cooper WR, Garczynski SF, Horton DR (2015) Relative abundance of Carsonella ruddii (Gamma Proteobacterium) in females and males of Cacopsylla pyricola (Hemiptera: Psyllidae) and Bactericera cockerelli (Hemiptera: Triozidae). Journal of Insect Science 15, 65.

    Google Scholar 

  • Cooper WR, Garczynski SF, Horton DR, Unruh TR, Beers EH, Shearer WP, Hilton RJ (2017) Bacterial endosymbionts of the psyllid Cacopsylla pyricola (Hemiptera: Psyllidae) in the Pacific Northwestern United States. Environmental Entomology 46, 393–402.

    Google Scholar 

  • Crotti E, Damiani C, Pajoro M, Gonella E, Rizzi A, Ricci I, Negri I, Scuppa P, Rossi P, Ballarini P, Raddadi N, Marzorati M, Sacchi L, Clementi E, Genchi M, Mandrioli Bandi C, Favia G, Alma A, Daffonchio D (2009) Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environmental Microbiology 11, 3252–3264.

    Google Scholar 

  • Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Cherif A, Bandi C, Alma A, Daffonchio D (2012) Microbial symbionts: a resource for the management of insect-related problems. Microbial Biotechnology 5, 307–317.

    Google Scholar 

  • Ćurković Perica M (2008) Auxin-treatment induces recovery of phytoplasma-infected periwinkle. Journal of Applied Microbiology 105, 1826–1834.

    Google Scholar 

  • D’Amelio R, Berta G, Gamalero E, Massac N, Avidano L, Cantamessa S, D’Agostino G, Bosco D, Marzachì C (2011) Increased plant tolerance against chrysanthemum yellows phytoplasma (‘Candidatus Phytoplasma asteris’) following double inoculation with Glomus mosseae BEG12 and Pseudomonas putida S1Pf1Rif. Plant Pathology 60, 1014–1022.

    Google Scholar 

  • Degnan PH, Bittleston LS, Hansen AK, Sabree ZL, Moran NA, Almeida RPP (2011) Origin and examination of a leafhopper facultative endosymbiont. Current Microbiology 62, 1565–1572.

    Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Critical Reviews in Plant Sciences 25, 417–440.

    Google Scholar 

  • Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proceedings of the National Academy of Sciences of the United States of America 94, 3274–3278.

    Google Scholar 

  • Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – review and future prospects. Biological Control 103, 62–68.

    Google Scholar 

  • Fan H-W, Noda H, Xie H-Q, Suetsugu Y, Zhu Q-H, Zhang C-X (2015) Genomic analysis of an ascomycete fungus from the rice planthopper reveals how it adapts to an endosymbiotic lifestyle. Genome Biology and Evolution 7, 2623–2634.

    Google Scholar 

  • Farhan K (2014) Apple proliferation disease: insights on the phenomenon of recovery and use of fungal endophytes for phytoplasma control. PhD thesis, University of Udine, Italy.

    Google Scholar 

  • Forchetti G, Masciarelli O, Izaguirre M, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salycilic acid and inhibit growth of pathogenic fungi. Current Microbiology 61, 485–493.

    Google Scholar 

  • Fredenhagen A, Tamura SY, Kenny PTM, Komura H, Naya Y, Nakanishi K, Nishiyama K, Sugiura M, Kita H (1987) Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper. Journal of the American Chemical Society 109, 4409–4411.

    Google Scholar 

  • Fukatsu T, Ishikawa H (1992) A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae). Journal of Insect Physiology 38, 765–773.

    Google Scholar 

  • Gamalero E, D’Amelio R, Musso C, Cantamessa S, Pivato B, D’Agostino G, Duan J, Bosco D, Marzachì C, Berta G (2010) Effects of Pseudomonas putida S1Pf1Rif against Chrysanthemumyellows phytoplasma infection. Phytopathology 100, 805–813.

    Google Scholar 

  • Gamalero E, Marzachì C, Galetto L, Veratti F, Massa N, Bona E, Novello G, Glick BR, Ali S, Cantamessa S, D’Agostino G, Berta G (2017) An 1-aminocyclopropane-1-carboxylate (ACC) deaminase-expressing endophyte increases plant resistance to “flavescence dorée” phytoplasma infection. Plant Biosystems 151, 331–340.

    Google Scholar 

  • Goleki B, Schulz A, Thompson GA (1999) Translocation of structural P-proteins in the phloem. Plant Cell 11, 127–140.

    Article  Google Scholar 

  • Gonella E, Negri I, Marzorati M, Mandrioli M, Sacchi L, Pajoro M, Crotti E, Rizzi A, Clementi E, Tedeschi R, Bandi C, Alma A, Daffonchio D (2011) Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of “bois noir” in Vitis vinifera. Applied and Environmental Microbiology 77, 1423–1435.

    Google Scholar 

  • Gonella E, Crotti E, Rizzi A, Mandrioli M, Favia G, Daffonchio D, Alma A (2012) Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). BMC Microbiology 12(Supplement 1), S4.

    Google Scholar 

  • Gonella E, Pajoro M, Marzorati M, Crotti E, Mandrioli M, Pontini M, Bulgari D, Negri I, Sacchi L, Chouaia B, Daffonchio D, Alma A (2015) Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. Scientific Reports 5, 15811.

    Google Scholar 

  • Gonella E, Crotti E, Mandrioli M, Daffonchio D, Alma A (2018) Asaia symbionts interfere with infection by “flavescence dorée” phytoplasma in leafhoppers.Journal of Pest Science 91, 1033–1046.

    Google Scholar 

  • Gonzales F, Tkaczuk C, Dinu MM, Fiedler Z, Vidal S, Zchori-Fein E, Messelink GJ (2016) New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. Journal of Pest Science 89, 295–311.

    Google Scholar 

  • González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Diversity 47, 29–42.

    Google Scholar 

  • Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology 7, 1538.

    Google Scholar 

  • Grisan S, Martini M, Musetti R, Osler R (2011) Development of a molecular approach to describe the diversity of fungal endophytes in either phytoplasma infected, recovered or healthy grapevines. Bulletin of Insectology 64(Supplement), S207–S208.

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43, 895–914.

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16, 463–471.

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews 79, 293–320.

    Google Scholar 

  • Hongoh Y, Ishikawa H (1997) Uric acid as a nitrogen resource for the brown planthopper, Nilaparvata lugens: studies with synthetic diets and aposymbiotic insects.Zoological Science 14, 581–586.

    Google Scholar 

  • Iasur-Kruh L, Weintraub PG, Mozes-Daube N, Robinson WE, Perlman SJ, Zchori-Fein E (2011) Novel Rickettsiella bacterium in the leafhopper Orosius albicinctus (Hemiptera: Cicadellidae). Applied and Environmental Microbiology 79:4246–4252.

    Google Scholar 

  • Iasur-Kruh L, Naor V, Zahavi T, Ballinger MJ, Sharon R, Robinson WE, Perlman SJ, Zchori-Fein E (2017) Bacterial associates of Hyalesthes obsoletus (Hemiptera: Cixiidae), the insect vector of “bois noir” disease, with a focus on cultivable bacteria. Research in Microbiology 168, 94–101.

    Google Scholar 

  • Iasur-Kruh L, Zahavi T, Barkai R, Freilich S, Zchori-Fein E, Naor V (2018) Dyella-like bacterium isolated from an insect as a potential biocontrol agent against grapevine yellows. Phytopathology 108, 336–341.

    Article  CAS  Google Scholar 

  • Ishii Y, Matsuura Y, Kakizawa S, Nikoh N, Fukatsu T (2013) Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Applied and Environmental Microbiology 79, 5013–5022.

    Google Scholar 

  • Jarausch W, Fritz M, Arigossi R, Passera A, Casati P, Bianco PA (2017) Batteri endofiti potenziali agenti di biocontrollo nei confronti di fitoplasmi agenti di malattie negli alberi da frutto. VII Convegno Incontro Nazionale sui Fitoplasmi e le Malattie da Fitoplasmi. Grugliasco, Torino, Italy, 31.

    Google Scholar 

  • Jia D, Mao Q, Chen Y, Liu Y, Chen Q, Wu W, Zhang X, Chen H, Li Y, Wei T (2017) Insect symbiotic bacteria harbour viral pathogens for transovarial transmission. Nature Microbiology 2, 17025.

    Google Scholar 

  • Jing X, Wong AC-N, Chaston JM, Colvin J, McKenzie CL, Douglas AE (2014) The bacterial communities un plant phloem-sap-feeding insects. Molecular Ecology 23, 1433–1444.

    Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes are they mycorrhizal? Mycorrhiza 11, 207–211.

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist 140, 295–310.

    Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006) Analysis of defensive responses activated by volatile allo-ocimene treatment in Arabidopsis thaliana. Phytochemistry 67, 1520–1529.

    Article  CAS  Google Scholar 

  • Kloepper JW, McInroy JA, Liu K, Hu C-H (2013) Symptoms of fern distortion syndrome resulting from inoculation with opportunistic endophytic fluorescent Pseudomonas spp. Plos One 8, e58531.

    Article  CAS  Google Scholar 

  • Knoblauch M, Peters WS, Ehlers K, Van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13, 1221–1230.

    Article  CAS  Google Scholar 

  • Kobiałka M, Michalik A, Walczak M, Junkiert Ł, Szklarzewicz T (2016) Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma 253, 903–912.

    Article  Google Scholar 

  • Kobiałka M, Michalik A, Walczak M, Szklarzewicz T (2018) Dual “bacterial-fungal” symbiosis in Deltocephalinae leafhoppers (Insecta, Hemiptera, Cicadomorpha: Cicadellidae). Microbial Ecology 75, 771–782.

    Google Scholar 

  • Koga R, Bennet GM, Cryan JR, Moran NA (2013) Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environmental Microbiology 15, 2073–2081.

    Google Scholar 

  • Konnerth A, Krczal G, Boonrod K (2016) Immunodominant membrane proteins of phytoplasmas. Microbiology 162, 1267–1273.

    Article  CAS  Google Scholar 

  • Lahav T, Zchori-fein E, Naor V, Freilich S, Iasur-Kruh L (2016) Draft genome sequence of a Dyella-like bacterium from the planthopper Hyalesthes obsoletus. Genome Announcements 4, e00616–e00686.

    Google Scholar 

  • Latorre A, Manzano-Marín A (2017) Dissecting genome reduction and trait loss in insect endosymbionts. Annals of the New York Academy of Sciences 1389, 52–75.

    Google Scholar 

  • Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH (2017) Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology 18, 469–473.

    Google Scholar 

  • Lessio F, Picciau L, Gonella E, Mandrioli M, Tota F, Alma A (2016) The mosaic leafhopper Orientus ishidae: host plants, spatial distribution, infectivity, and transmission of 16SrV phytoplasma to vines. Bulletin of Insectology 69, 277–289.

    Google Scholar 

  • Li YH, Liu QF, Liu Y, Zhu JN, Zhang Q (2011) Endophytic bacterial diversity in roots of Typha angustifolia L. in the constructed Beijing Cuihu Wetland (China). Research in Microbiology 162, 124–131.

    Google Scholar 

  • Lidor O, Dror O, Hamershlak D, Shoshana N, Belausov E, Zahavi T, Mozes-Daube N, Naor V, Zchori-Fein E, Iasur-Kruh L, Bahar O (2018) Introduction of a putative biocontrol agent into a range of phytoplasma- and liberibacter-susceptible crop plants. Pest Management Science 74, 811–819.

    Google Scholar 

  • Lòpez-Fernàndez S, Mazzoni V, Pedrazzoli F, Pertot I, Campisano A (2017) A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants. Frontiers in Microbiology 8, 834.

    Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany 61, 2589–2601.

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63, 541–556.

    Google Scholar 

  • Lugtenberg BJJ, Caradus JR, Jhhnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology 92, 194.

    Google Scholar 

  • Martini M, Musetti R, Grisan S, Polizzotto R, Borselli S, Pavan F, Osler R (2009) DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Disease 93, 993–998.

    Google Scholar 

  • Marzorati M, Alma A, Sacchi L, Pajoro M, Palermo S, Brusetti L, Raddadi N, Balloi A, Tedeschi R, Clementi E, Corona S, Quaglino F, Bianco PA, Beninati T, Bandi C, Daffonchio D (2006) A novel bacteroides symbiont is localized in Scaphoideus titanus, the insect vector of “flavescence dorée” in Vitis vinifera. Applied and Environmental Microbiology 72, 1467–1475.

    Google Scholar 

  • Mauch-Mani B, Baccelli I, Luna E, Victor Flors V (2017) Defense priming: an adaptive part of induced resistance. Annual Review of Plant Biology 68, 485–512.

    Google Scholar 

  • McCutcheon JP, Moran NA (2010) Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biology and Evolution 2, 708–718.

    Google Scholar 

  • McLean AHC, Parker BJ, Hrček J, Henry LM, Godfray CJ (2016) Insect symbionts in food webs. Philosophical Transactions of the Royal Society B 371. 20150325.

    Google Scholar 

  • Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Tegli S, Viliani F, Surico G, Caciotti A, Fani R (2003) Fluctuations of endophytic bacterial communities isolated from tissues of elm plants. Research in Microbiology 154, 105–114.

    Google Scholar 

  • Morales-Lizcano NP, Hasan A, To HS, Lekadou TT, Copeland J, Wang P, Diallo HA, Konan Konan JL, Yoshioka K, Moeder W, Scott J, Arocha Rosete Y (2017) Microbial diversity in leaves, trunk and rhizosphere of coconut palms (Cocos nucifera L.) associated with the coconut lethal yellowing phytoplasma in Grand-Lahou, Côte d’Ivoire. African Journal of Biotechnology 16, 1534–1550.

    Google Scholar 

  • Moran NA, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Applied and Environmental Microbiology 71, 8802–8810.

    Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics 42, 165–190.

    Google Scholar 

  • Morrow JL, Hall AAG, Riegler M (2017) Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. Microbiome 5, 58.

    Article  Google Scholar 

  • Musetti R, Vecchione A, Stringher L, Borselli S, Zulini L, Marzani C, D’Ambrosio M, Sanita di Toppi L, Pertot I (2006) Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology 96, 689–698.

    Article  CAS  Google Scholar 

  • Musetti R, Paolacci A, Ciaffi M, Tanzarella OA, Polizzotto R, Tubaro F, Mizzau M, Ermacora P, Badiani M, Osler R (2010) Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease. Phytopathology 100, 390–399.

    Article  CAS  Google Scholar 

  • Musetti R, Grisan S, Polizzotto R, Martini M, Paduano C, Osler R (2011) Interactions between ‘Candidatus Phytoplasma mali’ and the apple endophyte Epicoccum nigrum in Catharanthus roseus plants. Journal of Applied Microbiology 110, 746–756.

    Google Scholar 

  • Musetti R, Farhan K, De Marco F, Polizzotto R, Paolacci A, Ciaffi M, Ermacora P, Grisan S, Santi S, Osler R (2013) Differentially-regulated defence genes in Malus domestica during phytoplasma infection and recovery. European Journal of Plant Pathology 136, 13–19.

    Google Scholar 

  • Naor V, Zahavi T (2011) Long maintenance of phytoplasmas in grapevines Chardonnay and Cabernet Sauvignon in vitro. Phytopathogenic Mollicutes 1, 15–20.

    Article  Google Scholar 

  • Nascimento FX, Vicente CLS, Espada M, Glick BR, Mota M, Oliveira S (2013) The use of the ACC deaminase producing bacterium Pseudomonas putida UW4 as a biocontrol agent for pine wilt disease.BioControl 58, 427–433.

    Article  CAS  Google Scholar 

  • Nishino T, Tanahashi M, Lin C-P, Koga R, Fukatsu T (2016) Fungal and bacterial endosymbionts of eared leafhoppers of the subfamily Ledrinae (Hemiptera: Cicadellidae). Applied Entomology and Zoology 51, 465–477.

    Google Scholar 

  • Noda H, Nakashima N, Koizumi M (1995) Phylogenetic position of yeast-like symbionts of rice planthoppers based on partial 18S rDNA sequences.Insect Biochemistry and Molecular Biology 25, 639–646.

    Google Scholar 

  • Noda H, Watanabe K, Kawai S, Yukuhiro F, Miyoshi T, Tomizawa M, Koizumi Y, Nikoh N, Fukatsu T (2012) Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Applied Entomology and Zoology 47, 217–225.

    Google Scholar 

  • Ortmann I, Conrath U, Moerschbacher BM (2006) Exopolysaccharides of Pantoea agglomerans have different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEMS Microbiology Letters 580, 4491–4494.

    Google Scholar 

  • Pancher M, Ceol M, Corneo P, Longa C, Yousaf S, Pertot I, Campisano A (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Applied and Environmental Microbiology 78, 4308–4317.

    Google Scholar 

  • Passera A, Bulgari D, Casati P, Quaglino F, Bianco PA (2015) Use of endophytic Burkholderia sp. induces recovery in FD affected grapevines. Microbe-Assisted Crop Production – Opportunities Challenges and Needs. Vienna, Austria.

    Google Scholar 

  • Passera A, Venturini G, Battelli G, Casati P, Penaca F, Quaglino F, Bianco PA (2017) Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent. Microbiological Research 198, 16–26.

    Google Scholar 

  • Passera A, Marcolungo L, Casati P, Brasca M, Quaglino F, Cantaloni C, Delledonne M (2018) Hybrid genome assembly and annotation of Paenibacillus pasadenensis strain R16 reveals insights on endophytic life style and antifungal activity. Plos One 13, e0189993.

    Article  Google Scholar 

  • Perilla-Henao LM, Casteel CL (2016) Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Frontiers in Plant Science 7, 1163.

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial Ecology of Leaves. Eds Andrews JH, Hirano SS. Springer, New York, United States of America, 179–197 pp.

    Google Scholar 

  • Pinto C, Gomes AC (2016) Vitis vinifera microbiome: from basic research to technological development. BioControl 61, 243.

    Article  CAS  Google Scholar 

  • Pinto C, Pinho D, Sousa S, Pinheiro M, Egas CC, Gomes A (2014) Unravelling the diversity of grapevine microbiome. Plos One 9, e85622.

    Article  Google Scholar 

  • Powell CM, Hail D, Potocnjak J, Hanson JD, Halbert SH, Bextine BR (2015) Bacterial community composition of three candidate insect vectors of palm phytoplasma (Texas phoenix palm decline and lethal yellowing). Current Microbiology 70, 240–245.

    Google Scholar 

  • Prosdocimi EM, Mapelli F, Gonella E, Borin S, Crotti E (2015) Microbial ecology-based methods to characterize the bacterial communities of non-model insects. Journal of Microbiological Methods 119, 110–125.

    Google Scholar 

  • Raddadi N, Gonella E, Camerota C, Pizzinat A, Tedeschi R, Crotti E, Mandrioli M, Bianco PA, Daffonchio D, Alma A (2011) ‘Candidatus Liberibacter europaeus’ sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environmental Microbiology 13, 414–426.

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytologist 182, 314–330.

    Google Scholar 

  • Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nature Reviews Microbiology 9, 99–108.

    Google Scholar 

  • Roossinck MJ (2015) Plants, viruses and the environment: ecology and mutualism. Virology 479–480, 271–277.

    Article  Google Scholar 

  • Sacchi L, Genchi M, Clementi E, Bigliardi E, Avanzati AM, Pajoro M, Negri I, Marzorati M, Gonella E, Alma A, Daffonchio D, Bandi C (2008) Multiple symbiosis in the leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae): details of transovarial transmission of Cardinium sp. and yeast-like endosymbionts. Tissue and Cell 40, 231–242.

    Google Scholar 

  • Saldaña MA, Hedge S, Hughes GL (2017) Microbial control of arthropod-borne disease. Memórias do Instituto Oswaldo Cruz 112, 81–93.

    Google Scholar 

  • Salomon MV, Purpora R, Bottini R, Piccoli P (2016) Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species. Plant Physiology and Biochemistry 106, 295–304.

    Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Molecular Plant-Microbe Interactions 21, 799–807.

    Google Scholar 

  • Skou JP, Jorgensen JH, Lilholt U (1984) Comparative studies on callose formation in powdery mildew compatible and incompatible barley. Hordeum vulgare Phytopathologische Zeitschrift 109, 147–168.

    Article  Google Scholar 

  • Sloan DB, Moran NA (2012) Genome reduction and co-evolution between the primary and secondary bacterial symbiotnts of psyllids. Molecular Biology and Evolution 29, 3781–3792.

    Google Scholar 

  • Sorokan AV, Ben’kovskaya GV, Maksimov IV (2016) The influence of potato endophytes on Leptinotarsa decemlineata endosymbionts promotes mortality of the pest. Journal of Invertebrate Pathology 136, 65–67.

    Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. Journal of Natural Products 67, 257–268.

    Google Scholar 

  • Thao M, Moran NA, Abbot P, Bennan EB, Burckhardt DH, Baumann P (2000) Cospeciation of psyllids ant their primary prokaryotic endosymbionts. Applied and Environmental Microbiology 66, 2898–2905.

    Google Scholar 

  • Toklikishvili N, Dandurishvili N, Vainstein A, Tediashvili M, Giorgobiani N, Lurie S, Szegedi E, Glick BR, Chernin L (2010) Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathology 59, 1023–1030.

    Google Scholar 

  • Trivedi P, Duan Y, Wang N (2010) Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots. Applied and Environmental Microbiology 76, 3427–3436.

    Google Scholar 

  • Turelli M, Hoffmann AA (1999) Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Molecular Biology 8, 243–255.

    Google Scholar 

  • Urban JM, Cryan JR (2012) Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evolutionary Biology 12, 87.

    Google Scholar 

  • van Overbeek LS, Bergervoet JHH, Jacobs FHH, van Elsas JD (2004) The low-temperature-induced viable-but-nonculturable state affects the virulence of Ralstonia solanacearum biovar 2. Phytopathology 94, 463–469.

    Article  Google Scholar 

  • Varanda CMR, Oliveira M, Materatski P, Landum M, Clara MIE, Felix MR (2016) Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biology 120, 1525–1536.

    Google Scholar 

  • Vogel KJ, Moran NA (2013) Functional and evolutionary analysis of the genome of an obligate fungal symbiont. Genome Biology and Evolution 5, 891–904.

    Google Scholar 

  • Wang J, Wu Y, Yang G, Aksoy S (2009) Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proceedings of the National Academy of Sciences of the United States of America 106, 12133–12138.

    Google Scholar 

  • Wang N, Pierson EA, Setubal JC, Xu J, Levy JG, Zhang Y, Li J, Rangel LT, Martins J Jr (2017) The ‘Candidatus Liberibacter’–host interface: insights into pathogenesis mechanisms and disease control. Annual Review of Phytopathology 55, 451–482.

    Google Scholar 

  • Wangkeeree J, Miller TA, Hanboonsong Y (2011) Predominant bacteria symbionts in the leafhopper Matsumuratettix hiroglyphicus – the vector of sugarcane white leaf phytoplasma. Bulletin of Insectology 64(Supplement), S215–S216.

    Google Scholar 

  • Wangkeeree J, Miller TA, Hanboonsong Y (2012) Candidates for symbiotic control of sugarcane white leaf disease. Applied and Environmental Microbiology 78, 6804–6811.

    Google Scholar 

  • Xie B, Wang X, Zhu M, Zhang Z, Hong Z (2011) CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant Journal 65, 1–14.

    Google Scholar 

  • Xue J, Zhou X, Zhang CX, Yu LL, Fan HW, Wang Z, Xu HJ, Xi Y, Zhu ZR, Zhou WW, Pan PL, Li BL, Colbourne JK, Noda H, Suetsugu Y, Kobayashi T, Zheng Y, Liu S, Zhang R, Liu Y, Luo YD, Fang DM, Chen Y, Zhan DL, Lv XD, Cai Y, Wang ZB, Huang HJ, Cheng RL, Zhang XC, Lou YH, Yu B, Zhuo JC, Ye YX, Zhang WQ, Shen ZC, Yang HM, Wang J, Wang J, Bao YY, Cheng JA (2014) Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology 15, 521.

    Google Scholar 

  • Yi HS, Heil M, Adame-Alvarez RM, Ballhorn DJ, Ryu CM (2009) Air borne induction and priming of plant defenses against a bacterial pathogen. Plant Physiology 151, 2152–2161.

    Google Scholar 

  • Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao LH, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease. Plos One 12, 1–12.

    Google Scholar 

  • Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proceedings of the National Academy of Sciences of the United States of America 101, 15042–15045.

    Google Scholar 

  • Zchori-Fein E, Bourtzis K (2011) Manipulative tenants: bacteria associated with arthropods. Frontiers in Microbiology Series. CRC Press, Boca Raton, United States of America, 306 pp.

    Google Scholar 

  • Zhu F, Poelman EH, Dicke M (2014) Insect herbivore-associated organisms affect plant responses to herbivory. New Phytologist 204, 315–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Gonella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonella, E., Musetti, R., Crotti, E., Martini, M., Casati, P., Zchori-Fein, E. (2019). Microbe Relationships with Phytoplasmas in Plants and Insects. In: Bertaccini, A., Weintraub, P., Rao, G., Mori, N. (eds) Phytoplasmas: Plant Pathogenic Bacteria - II. Springer, Singapore. https://doi.org/10.1007/978-981-13-2832-9_10

Download citation

Publish with us

Policies and ethics