Skip to main content

Webs of Quantum Algebra Representations in 5d \({\mathcal {N}}=1\) Super Yang–Mills

  • Conference paper
  • First Online:
Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 (LT-XII/QTS-X 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 263))

Included in the following conference series:

Abstract

Instanton partition functions of 5d \({\mathcal {N}}=1\) Super Yang–Mills reduced on \(S^1\) are engineered in type IIB string theory from webs of (pq)-branes. Branes intersections are associated to the (refined) topological vertex, while the web diagram provides gluing rules. These partition functions are covariant under the action of a quantum toroidal algebra, the Ding–Iohara–Miki algebra. In fact, a web of representations can be associated to the brane web diagram, where (pq)-branes correspond to representations of levels (qp), and topological vertices to intertwiners. Using this correspondence, the \({\mathcal {T}}\)-operator of a new type of quantum integrable systems can be constructed. Its vacuum expectation value reproduces the Nekrasov instanton partition function, while further insertion of algebra elements provides the qq-characters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The AGT-correspondence with Liouville/Toda 2d CFT [4, 34] is another facet of this problem, promoting this duality to a triality but giving only limited insight on the formulation of an \(\epsilon _2\)-deformed integrable system.

  2. 2.

    It is noted that the representation (0, m) is not simply obtained from the coproduct of (0, 1) representations in our conventions where all Young diagrams \(\lambda _l\) appear in a symmetric way.

  3. 3.

    The presence of this extra factor is due to the fact that the Lax matrix comes from a wrongly normalized R-matrix that does not satisfy the two additional relations

    $$\begin{aligned} (\varDelta \otimes 1){\mathcal {R}}={\mathcal {R}}_{13}{\mathcal {R}}_{23},\quad (1\otimes \varDelta ){\mathcal {R}}={\mathcal {R}}_{13}{\mathcal {R}}_{12}. \end{aligned}$$
    (13)
  4. 4.

    The covariance properties of this operator, sometimes called vertical intertwiner, were analyzed in [12, 13], where it has also been used to define the qq-characters.

References

  1. Aganagic M, Klemm A, Marino M, Vafa C (2005) The topological vertex. Communications in mathematical physics 254(2):425–478

    Article  MathSciNet  Google Scholar 

  2. Aharony O, Hanany A, Kol B (1998) Webs of (p,q) 5-branes, Five Dimensional Field Theories and Grid Diagrams. JHEP 9801:002, hep-th/9710116

    Article  Google Scholar 

  3. Alba VA, Fateev VA, Litvinov AV, Tarnopolskiy GM (2011) On combinatorial expansion of the conformal blocks arising from AGT conjecture. LettMathPhys 98:33–64, 1012.1312

    Google Scholar 

  4. Alday LF, Gaiotto D, Tachikawa Y (2010) Liouville Correlation Functions from Four-dimensional Gauge Theories. LettMathPhys 91:167–197, 0906.3219

    MathSciNet  MATH  Google Scholar 

  5. Awata H, Yamada Y (2010) Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra. JHEP 01:125, 0910.4431

    Article  MathSciNet  Google Scholar 

  6. Awata H, Feigin B, Shiraishi J (2012) Quantum Algebraic Approach to Refined Topological Vertex. JHEP 2012(03):041, 1112.6074

    Article  Google Scholar 

  7. Awata H, Kanno H, Matsumoto T, Mironov A, Morozov A, Morozov A, Ohkubo Y, Zenkevich Y (2016a) Explicit examples of DIM constraints for network matrix models. JHEP 07:103, 1604.08366

    Google Scholar 

  8. Awata H, Kanno H, Mironov A, Morozov A, Morozov A, Ohkubo Y, Zenkevich Y (2016b) Anomaly in RTT relation for DIM algebra and network matrix models 1611.07304

    Google Scholar 

  9. Awata H, Kanno H, Mironov A, Morozov A, Morozov A, Ohkubo Y, Zenkevich Y (2016c) Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations 1608.05351

    MATH  Google Scholar 

  10. Awata H, Kanno H, Mironov A, Morozov A, Suetake K, Zenkevich Y (2017) \((q,t)\)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces 1712.08016

    Google Scholar 

  11. Bourgine JE, Fioravanti D (2017) Seiberg-Witten period relations in Omega background 1711.07570

    MATH  Google Scholar 

  12. Bourgine JE, Fukuda M, Matsuo Y, Zhang H, Zhu RD (2016a) Coherent states in quantum \(\cal W\it _{1+\infty }\) algebra and qq-character for 5d Super Yang-Mills. PTEP 2016(12):123B05, 1606.08020

    Google Scholar 

  13. Bourgine JE, Matsuo Y, Zhang H (2016b) Holomorphic field realization of SH\(^{c}\) and quantum geometry of quiver gauge theories. JHEP 04:167, 1512.02492

    Google Scholar 

  14. Bourgine JE, Fukuda M, Harada K, Matsuo Y, Zhu RD (2017a) (p,q)-webs of DIM representations, 5d N=1 instanton partition functions and qq-characters 1703.10759

    Google Scholar 

  15. Bourgine JE, Fukuda M, Matsuo Y, Zhu RD (2017b) Reflection states in Ding-Iohara-Miki algebra and brane-web for D-type quiver 1709.01954

    Google Scholar 

  16. Ding J, Iohara K (1997) Generalization of Drinfeld quantum affine algebra. Lett Math Phys 41(2):181–193, q-alg/9608002v2

    Google Scholar 

  17. Foda O, Wu JF (2017) A Macdonald refined topological vertex. J Phys A50(29):294,003, 1701.08541

    Article  MathSciNet  Google Scholar 

  18. Frenkel I, Jing N (1988) Vertex representation of quantum affine algebras. Proc Natl Acad Sci USA 85:9373–9377

    Article  MathSciNet  Google Scholar 

  19. Gaiotto D (2009) Asymptotically free N=2 theories and irregular conformal blocks 0908.0307

    Google Scholar 

  20. Hanany A, Witten E (1997) Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl Phys B492:152–190, hep-th/9611230

    Article  MathSciNet  Google Scholar 

  21. Iqbal A, Kozcaz C, Vafa C (2009) The Refined Topological Vertex. JHEP 2009(0910):069, hep-th/0701156

    Article  Google Scholar 

  22. Jimbo M, Miwa T (1994) Algebraic analysis of solvable lattice models, vol 85, cbms edn. AMS Society

    Google Scholar 

  23. Kanno S, Matsuo Y, Zhang H (2013) Extended Conformal Symmetry and Recursion Formulae for Nekrasov Partition Function. JHEP 1308:028

    Google Scholar 

  24. Kimura T (2016) Double quantization of Seiberg-Witten geometry and W-algebras. 1612.07590

    Google Scholar 

  25. Leung N, Vafa C (1998) Branes and Toric Geometry. Adv Theor Math Phys 2:91–118, hep-th/9711013

    Article  MathSciNet  Google Scholar 

  26. Marshakov A (1999) Seiberg-Witten theory and integrable systems. World Scientific

    Google Scholar 

  27. Miki K (2007) A (q, \(\gamma \)) analog of the \(W_{1+\infty }\) algebra. Journal of Mathematical Physics 48(12):123520

    Article  MathSciNet  Google Scholar 

  28. Mironov A, Morozov A, Zenkevich Y (2016) Ding–Iohara–Miki symmetry of network matrix models. Phys Lett B762:196–208, 1603.05467

    Article  MathSciNet  Google Scholar 

  29. Nekrasov N (2004) Seiberg-Witten prepotential from instanton counting. Adv Theor Math Phys 7:831, hep-th/0306211

    Article  MathSciNet  Google Scholar 

  30. Nekrasov N (2016) BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters. JHEP 03:181, 1512.05388

    Google Scholar 

  31. Nekrasov N, Shatashvili S (2009) Quantization of Integrable Systems and Four Dimensional Gauge Theories. World Scientific Publishing Co. Pte. Ltd., pp 265–289, 0908.4052

    Google Scholar 

  32. Nekrasov N, Pestun V, Shatashvili S (2013) Quantum geometry and quiver gauge theories 1312.6689

    Google Scholar 

  33. Schiffmann O, Vasserot E (2013) Cherednik algebras, W algebras and the equivariant cohomology of the moduli space of instantons on \({\mathbb{A}}^2\). Pub Math de l’IHES 118(1):213–342, 1202.2756v2

    Google Scholar 

  34. Wyllard N (2009) \(A_{N-1}\) conformal Toda field theory correlation functions from conformal N\(=\)2 SU(N) quiver gauge theories. JHEP 11:002, 0907.2189

    Google Scholar 

Download references

Acknowledgements

I would like to thank my collaborators D. Fioravanti, M. Fukuda, K. Harada, Y. Matsuo, H. Zhang, R.-D. Zhu, with whom I had the pleasure to study various aspects of instanton partition functions and quantum algebras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Emile Bourgine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bourgine, JE. (2018). Webs of Quantum Algebra Representations in 5d \({\mathcal {N}}=1\) Super Yang–Mills. In: Dobrev, V. (eds) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 . LT-XII/QTS-X 2017. Springer Proceedings in Mathematics & Statistics, vol 263. Springer, Singapore. https://doi.org/10.1007/978-981-13-2715-5_11

Download citation

Publish with us

Policies and ethics