Skip to main content

Biocomposites for Hard Tissue Replacement and Repair

  • Chapter
  • First Online:
Futuristic Composites

Abstract

Biomaterials with single composition suffer from shortcomings limiting their lifetime and sometimes restricting their applications. Therefore, biocomposites have been started to develop by combining two or more biomaterials with different characteristics to provide superior properties compared to each biomaterial alone. These materials can be flexibly tailored to provide material properties fitted with a given application. In their way to be designed, the principles exist in human body tissues that can be used as a guide. This helps in providing biomimetic materials. Over the recent past decades, research on composite materials for biomedical applications has been progressively increased. A large number of composites, therefore, have been developed and tested for hard tissue replacements and repair. This includes total joint replacements, devices used for fractured bone treatment, dental restorative materials, dental implants, and bone scaffolds. This chapter provides information on permanent and temporary implants and the essential material requirements for their applications. Furthermore, it specifically explains different types of composite biomaterials used in hard tissue replacements and repair. However, this chapter does not include ancillary implants or fasteners used to treat fractured bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahraminasab M, Farahmand F (2017) State of the art review on design and manufacture of hybrid biomedical materials: hip and knee prostheses. Proc Inst Mech Eng Part H J Eng Med 0954411917705911

    Google Scholar 

  2. Salernitano E, Migliaresi C (2003) Composite materials for biomedical applications: a review. J Appl Biomater Biomech 1(1):3–18

    CAS  Google Scholar 

  3. Mano JF et al (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64(6):789–817

    Article  CAS  Google Scholar 

  4. Sadoghi P et al (2013) Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty 28(8):1329–1332

    Article  Google Scholar 

  5. Bahraminasab M et al (2012) Aseptic loosening of femoral components—a review of current and future trends in materials used. Mater Des 42:459–470

    Article  CAS  Google Scholar 

  6. Luther C, Germann G, Sauerbier M (2010) Proximal interphalangeal joint replacement with surface replacement arthroplasty (SR–PIP): functional results and complications. Hand 5(3):233–240

    Article  Google Scholar 

  7. Hernigou P et al (2004) Alternative femoral bearing surface options for knee replacement in young patients. Knee 11(3):169–172

    Article  Google Scholar 

  8. Bahraminasab M et al (2013) Aseptic loosening of femoral components-materials engineering and design considerations. Mater Des 44:155–163

    Article  CAS  Google Scholar 

  9. Farag MM (1997) Materials selection for engineering design. Prentice Hall

    Google Scholar 

  10. Christen P et al (2014) Bone remodelling in humans is load-driven but not lazy. Nat Commun 5:4855

    Article  CAS  Google Scholar 

  11. Geetha M et al (2008) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54(3):397–425

    Article  Google Scholar 

  12. Denard PJ et al (2018) Stress shielding of the humerus in press-fit anatomic shoulder arthroplasty: review and recommendations for evaluation. J Shoulder Elbow Surg

    Google Scholar 

  13. Teoh SH (2000) Fatigue of biomaterials: a review. Int J Fatigue 22(10):825–837

    Article  CAS  Google Scholar 

  14. Broomfield JA et al (2017) The relationship between polyethylene wear and periprosthetic osteolysis in total hip arthroplasty at 12 years in a randomized controlled trial cohort. J Arthroplasty 32(4):1186–1191

    Article  Google Scholar 

  15. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26(11):1271–1286

    Article  CAS  Google Scholar 

  16. Özcan M, Hämmerle C (2012) Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials 5(9):1528–1545

    Article  Google Scholar 

  17. Bahraminasab M, Hassan MR, Sahari BB (2010) Metallic biomaterials of knee and hip—a review. Trends Biomater Artif Organs 24(2):69–82

    Google Scholar 

  18. Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26(1):11–21

    Article  CAS  Google Scholar 

  19. Williams DF (2009) On the nature of biomaterials. Biomaterials 30(30):5897–5909

    Article  CAS  Google Scholar 

  20. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Engi R Rep 87:1–57

    Article  Google Scholar 

  21. Salinas AJ, Vallet-Regí M (2013) Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv 3(28):11116–11131

    Article  CAS  Google Scholar 

  22. Marques N, Davim JP (2002) Tribological comparative study of conventional and composite materials in biomedical applications, pp 487–490

    Google Scholar 

  23. Saha D et al (2007) Production and biocompatibility evaluation of carbon fiber reinforced polyethylene composite for acetabular cup. Sci Eng Compos Mater 14(1):47–55

    Article  CAS  Google Scholar 

  24. Scholes SC, Unsworth A (2009) Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. J Mater Sci Mater Med 20(1):163–170

    Article  CAS  Google Scholar 

  25. Marques N, Davim JP (2002) Tribological comparative study of conventional and composite materials in biomedical applications. Key Eng Mater 230:487–490

    Article  Google Scholar 

  26. Geringer J, Tatkiewicz W, Rouchouse G (2011) Wear behavior of PAEK, poly(aryl-ether-ketone), under physiological conditions, outlooks for performing these materials in the field of hip prosthesis. Wear 271(11–12):2793–2803

    Article  CAS  Google Scholar 

  27. Früh H-J, Willmann G (1998) Tribological investigations of the wear couple alumina–CFRP for total hip replacement. Biomaterials 19(13):1145–1150

    Article  Google Scholar 

  28. Roy Chowdhury SK et al (2004) Wear characteristic and biocompatibility of some polymer composite acetabular cups. Wear 256(11–12):1026–1036

    Article  Google Scholar 

  29. Liu JL et al (2008) Biotribological behavior of ultra high molecular weight polyethylene composites containing bovine bone hydroxyapatite. J China Univ Min Technol 18(4):606–612

    Google Scholar 

  30. Ghorbel HF et al (2017) Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: an agent of cohesion between bone and prostheses. Mater Sci Eng C 71:1090–1098

    Article  CAS  Google Scholar 

  31. Qadir M et al (2017) Calcium phosphate-based composite coating by micro-arc oxidation (MAO) for biomedical application: a review. Crit Rev Solid State Mater Sci 1–25

    Google Scholar 

  32. Bartelstein MK et al (2017) Failure of a polyaryletheretherketone-cobalt-chromium composite femoral stem due to coating separation and subsidence: a case report. JBJS Case Connect 7(4):e83

    Article  Google Scholar 

  33. Campbell M et al (2008) CF/PA12 composite femoral stems: manufacturing and properties. Compos Part A Appl Sci Manuf 39(5):796–804

    Article  Google Scholar 

  34. Sridhar I, Adie PP, Ghista DN (2010) Optimal design of customised hip prosthesis using fiber reinforced polymer composites. Mater Des 31(6):2767–2775

    Article  CAS  Google Scholar 

  35. Bougherara H et al (2007) Design of a biomimetic polymer-composite hip prosthesis. J Biomed Mater Res Part A 82(1):27–40

    Article  Google Scholar 

  36. Sola A, Bellucci D, Cannillo V (2016) Functionally graded materials for orthopedic applications—an update on design and manufacturing. Biotechnol Adv 34(5):504–531

    Article  CAS  Google Scholar 

  37. Lee G-C, Kim RH (2017) Incidence of modern alumina ceramic and alumina matrix composite femoral head failures in nearly 6 million hip implants. J Arthroplasty 32(2):546–551

    Article  Google Scholar 

  38. Stewart TD et al (2003) Long-term wear of ceramic matrix composite materials for hip prostheses under severe swing phase microseparation. J Biomed Mater Res B Appl Biomater 66(2):567–573

    Article  Google Scholar 

  39. Brockett CL et al (2017) PEEK and CFR-PEEK as alternative bearing materials to UHMWPE in a fixed bearing total knee replacement: an experimental wear study. Wear 374–375:86–91

    Article  Google Scholar 

  40. Schierjott RA et al (2016) Analysis of carbon fiber reinforced PEEK hinge mechanism articulation components in a rotating hinge knee design: a comparison of in vitro and retrieval findings. BioMed Res Int 2016

    Google Scholar 

  41. Leyen S, Schwiesau J, Schmidt R (2002) Investigation of the wear behaviour of a ceramic knee concept with floating meniscal bearing. Key Eng Mater 585–586

    Google Scholar 

  42. Adkinson JM, Chung KC (2014) Advances in small joint arthroplasty of the hand. Plast Reconstr Surg 134(6):1260

    Article  CAS  Google Scholar 

  43. Kim SS et al (2009) Development of the carbon/phenolic composite shoulder bearing. Compos Struct 88(1):26–32

    Article  Google Scholar 

  44. Khan WS et al (2012) An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? Stem Cells Int 2012

    Google Scholar 

  45. Kern S et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    Article  CAS  Google Scholar 

  46. Smith LA et al (2010) The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 31(21):5526–5535

    Article  CAS  Google Scholar 

  47. Kim S et al (2008) In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly(d, l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds. Biomaterials 29(8):1043–1053

    Article  CAS  Google Scholar 

  48. Knippenberg M et al (2005) Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng 11(11–12):1780–1788

    Article  CAS  Google Scholar 

  49. Varkey M, Gittens SA, Uludag H (2004) Growth factor delivery for bone tissue repair: an update. Expert Opin Drug Deliv 1(1):19–36

    Article  CAS  Google Scholar 

  50. Chen S-H et al (2012) Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Acta Biomater 8(8):3128–3137

    Article  CAS  Google Scholar 

  51. Yang S et al (2002) The design of scaffolds for use in tissue engineering. Part II. rapid prototyping techniques. Tissue Eng 8(1):1–11

    Article  CAS  Google Scholar 

  52. Kohn J (2004) New approaches to biomaterials design. Nat Mater 3(11):745–747

    Article  CAS  Google Scholar 

  53. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10(2):S96–S101

    Google Scholar 

  54. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798

    Article  CAS  Google Scholar 

  55. Yang S et al (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689

    Article  CAS  Google Scholar 

  56. Adachi T et al (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972

    Article  CAS  Google Scholar 

  57. Hollister SJ et al (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8(3):162–173

    Article  CAS  Google Scholar 

  58. Shavandi A et al (2015) Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. Int J Biol Macromol 80:445–454

    Article  CAS  Google Scholar 

  59. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Article  CAS  Google Scholar 

  60. Liu YJ, Su WT, Chen PH (2018) Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro. J Biomater Appl 32(6):765–774

    Article  CAS  Google Scholar 

  61. Qi Y et al (2018) Strategy of metal-polymer composite stent to accelerate biodegradation of iron-based biomaterials. ACS Appl Mater Interfaces 10(1):182–192

    Article  CAS  Google Scholar 

  62. Sheikh Z et al (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials 8(9):5744–5794

    Article  CAS  Google Scholar 

  63. Zhao W et al (2005) Progress in researches on the synthesis of poly(propylene fumarate) and its crosslinking characteristics. Sheng wu yi xue gong cheng xue za zhi = J Biomed Eng = Shengwu yixue gongchengxue zazhi 22(2):381–384

    Google Scholar 

  64. Chu T-MG et al (2007) Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Biomaterials 28(3):459–467

    Article  CAS  Google Scholar 

  65. Jabbari E (2007) Bioinspired nanomaterials for bone regeneration. In: Nanopatterning and nanoscale devices for biological applications, p 329

    Google Scholar 

  66. Kim MH et al (2018) Quantitative analysis of the role of nanohydroxyapatite (nHA) on 3D-printed PCL/nHA composite scaffolds. Mater Lett 220:112–115

    Article  CAS  Google Scholar 

  67. Mohammadkhah A, Day DE (2018) Mechanical properties of bioactive glass/polymer composite scaffolds for repairing load bearing bones. Int J Appl Glass Sci 9(2):188–197

    Article  CAS  Google Scholar 

  68. Kaliaraj R et al (2018) A biomimetic mesoporous silica–polymer composite scaffold for bone tissue engineering. J Porous Mater 25(2):397–406

    Article  CAS  Google Scholar 

  69. Szustakiewicz K et al (2018) Femtosecond laser-induced modification of PLLA/hydroxypatite composite. Polym Degrad Stab 149:152–161

    Article  CAS  Google Scholar 

  70. Ivanovic J, Rezwan K, Kroll S (2018) Supercritical CO2 deposition and foaming process for fabrication of biopolyester–ZnO bone scaffolds. J Appl Polym Sci 135(7)

    Google Scholar 

  71. Huang B et al (2018) Polymer-ceramic composite scaffolds: the effect of hydroxyapatite and β-tri-calcium phosphate. Materials 11(1)

    Google Scholar 

  72. Farokhi M et al (2018) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 36(1):68–91

    Article  CAS  Google Scholar 

  73. Shuai C et al (2018) Positive feedback effects of Mg on the hydrolysis of poly-l-lactic acid (PLLA): promoted degradation of PLLA scaffolds. Polym Testing 68:27–33

    Article  CAS  Google Scholar 

  74. Bhaskar B et al (2018) Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds. J Biomed Mater Res Part A 106(5):1334–1340

    Article  CAS  Google Scholar 

  75. Choi MO, Kim YJ (2018) Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin ratios on the characteristics of biomimetic composite nanofibrous scaffolds. Colloid Polym Sci 1–10

    Google Scholar 

  76. Chen J et al (2018) Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. J Colloid Interface Sci 514:517–527

    Article  CAS  Google Scholar 

  77. Kaczmarek B et al (2018) New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS. Int J Biol Macromol 107(Part A):247–253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Bahraminasab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahraminasab, M., Edwards, K.L. (2018). Biocomposites for Hard Tissue Replacement and Repair. In: Sidhu, S., Bains, P., Zitoune, R., Yazdani, M. (eds) Futuristic Composites . Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2417-8_14

Download citation

Publish with us

Policies and ethics