Skip to main content

Stress Response of Microalgae and Its Manipulation for Development of Robust Strains

  • Chapter
  • First Online:
Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment

Abstract

Microalgae are promising producers of lipids and various valuable chemicals. Improved production titers and productivities of the desired products will reduce the production cost and subsequently benefit industrialization of microalgal biorefinery. Accumulation of lipids and valuable products in microalgae is commonly triggered by various stress factors. However, microalgal growth is compromised under stress conditions. Therefore, understanding stress response of microalgae and manipulation of stress conditions may enable development of robust microalgae strains that efficiently produce target molecules. In this chapter, recent advances in manipulating environmental stresses for lipids and pigment accumulation in microalgae are summarized, and development of superior microalgal strains as the efficient microbial cell factories based on omics approaches are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajjawi I, Verruto J, Aqui M, et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol. 2017;35(7):647–52.

    Article  CAS  PubMed  Google Scholar 

  • An M, Mou S, Zhang X, et al. Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour Technol. 2013;134:151–7.

    Article  CAS  PubMed  Google Scholar 

  • Bajhaiya AK, Dean AP, Driver T, et al. High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation. Metabolomics. 2016a;12(1):9.

    Article  PubMed  CAS  Google Scholar 

  • Bajhaiya AK, Dean AP, Zeef LA, et al. PSR1 is a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas reinhardtii. Plant Physiol. 2016b;170(3):1216–34.

    CAS  PubMed  Google Scholar 

  • Bajhaiya AK, Ziehe Moreira J, Pittman JK. Transcriptional engineering of microalgae: prospects for high-value chemicals. Trends Biotechnol. 2017;35(2):95–9.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Maiti SK, Guria C, et al. Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis. Biotechnol Lett. 2017;39(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  • Bartley ML, Boeing WJ, Corcoran AA, et al. Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenergy. 2013;54:83–8.

    Article  CAS  Google Scholar 

  • Bonnefond H, Moelants N, Talec A, et al. Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnol Biofuels. 2017;10:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cakmak T, Angun P, Demiray YE, et al. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng. 2012;109(8):1947–57.

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Wan C, Mehmood MA, et al. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products – a review. Bioresour Technol. 2017;244(Pt 2):1198–2206.

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Nagarajan D, Cheah WY. Eicosapentaenoic acid production from Nannochloropsis oceanica CY2 using deep sea water in outdoor plastic-bag type photobioreactors. Bioresour Technol. 2018;253:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Lu HX, Huang Y, et al. Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO2 stress. Bioresour Technol. 2016;203:220–7.

    Article  CAS  PubMed  Google Scholar 

  • Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62.

    Article  CAS  PubMed  Google Scholar 

  • Chia SR, Chew KW, Show PL et al. Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: a review. Biotechnol J. 2018. https://doi.org/10.1002/biot.201700618.

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, et al. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol. 2009;100(2):833–8.

    Article  CAS  PubMed  Google Scholar 

  • Chokshi K, Pancha I, Ghosh A, et al. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnol Biofuels. 2017;10(1):60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu FF, Chu PN, Cai PJ, et al. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol. 2013;134:341–6.

    Article  CAS  PubMed  Google Scholar 

  • Costa BS, Jungandreas A, Jakob T, et al. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot. 2013;64(2):483–93.

    Article  CAS  Google Scholar 

  • Del Campo JA, Rodriguez H, Moreno J, et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol. 2004;64(6):848–54.

    Article  PubMed  CAS  Google Scholar 

  • Dragosits M, Mattanovich D. Adaptive laboratory evolution – principles and applications for biotechnology. Microb Cell Factories. 2013;12:64.

    Article  Google Scholar 

  • El-Baky HA. Overproduction of phycocyanin pigment in blue green alga Spirulina sp. and it’s inhibitory effect on growth of ehrlich ascites carcinoma cells. J Med Sci. 2003;3(4):314–24.

    Article  Google Scholar 

  • Eloka-Eboka AC, Inambao FL. Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl Energy. 2017;195:1100–11.

    Article  CAS  Google Scholar 

  • Feng D, Chen Z, Xue S, et al. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol. 2011;102(12):6710–6.

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Gudmundsson O, Feist AM, et al. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J Biotechnol. 2012;161(3):242–9.

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Guethmundsson O, Paglia G, et al. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol. 2013;97(6):2395–403.

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Li Y, Wu G, et al. Transcriptome analysis in Haematococcus pluvialis: astaxanthin induction by salicylic acid (SA) and jasmonic acid (JA). PLoS One. 2015;10(10):e0140609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ge F, Huang W, Chen Z, et al. Methylcrotonyl-CoA carboxylase regulates triacylglycerol accumulation in the model diatom Phaeodactylum tricornutum. Plant Cell. 2014;26(4):1681–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimpel JA, Henriquez V, Mayfield SP. In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol. 2015;6:1376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goncalves EC, Wilkie AC, Kirst M, et al. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol J. 2016;14(8):1649–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnieri MT, Pienkos PT. Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res. 2015;123(3):255–63.

    Article  CAS  PubMed  Google Scholar 

  • Guihéneuf F, Khan A, Tran LS. Genetic engineering: a promising tool to engender physiological, biochemical, and molecular stress resilience in green microalgae. Front Plant Sci. 2016;7:400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han F, Pei H, Hu W, et al. Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment. Bioresour Technol. 2016;209:16–22.

    Article  CAS  PubMed  Google Scholar 

  • He Q, Yang H, Wu L, et al. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol. 2015;191:219–28.

    Article  CAS  PubMed  Google Scholar 

  • Hejazi MA, Holwerda E, Wijffels RH. Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnol Bioeng. 2004;85(5):475–81.

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Ye X, Hasunuma T, et al. Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review. Biotechnol Adv. 2014;32(8):1448–59.

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Nakanishi A, Ye X, et al. Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity. Biotechnol Biofuels. 2015;8:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho SH, Nakanishi A, Kato Y, et al. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Sci Rep. 2017;7:45471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockin NL, Mock T, Mulholland F, et al. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 2012;158(1):299–312.

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–39.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Xu J, Li T, et al. Effects of additional Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions. Ann Microbiol. 2013;64(3):1247–56.

    Article  CAS  Google Scholar 

  • Iwai M, Ikeda K, Shimojima M, et al. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnol J. 2014;12(6):808–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Hori K, Sasakisekimoto Y, et al. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front Microbiol. 2015;6:912.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lippmeier J, Wynn J, Fichtali J et al. Production of high levels of DHA in microalgae using modified amounts of chlorides and potassium. Australia. AU 2010202691B2. 2010.

    Google Scholar 

  • Jinkerson RE, Jonikas MC. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J. 2015;82(3):393–412.

    Article  CAS  PubMed  Google Scholar 

  • Kamalanathan M, Pierangelini M, Shearman LA, et al. Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J Appl Phycol. 2015;28(3):1509–20.

    Article  CAS  Google Scholar 

  • Kang NK, Seungjib J, Sohee K, et al. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels. 2015;8(1):200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato Y, Ho SH, Vavricka CJ, et al. Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching. Bioresour Technol. 2017;245(Pt B):1484–90.

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim H, Ko D, et al. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. PLoS One. 2013a;8(12):e81978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Liu KH, Lee SY, et al. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. PLoS One. 2013b;8(9):e72415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers PP, van de Laak CC, Kaasenbrood PS, et al. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng. 2010;106(4):638–48.

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wang L, Zhao Q, et al. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresour Technol. 2015;185:269–75.

    Article  CAS  PubMed  Google Scholar 

  • Liang MH, Jiang JG. Analysis of carotenogenic genes promoters and WRKY transcription factors in response to salt stress in Dunaliella bardawil. Sci Rep. 2017;7:37025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Mao X, Zhou W, et al. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresour Technol. 2016;214:319–27.

    Article  CAS  PubMed  Google Scholar 

  • Longworth J, Wu D, Huete-Ortega M, et al. Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Res. 2016;18:213–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu N, Wei D, Chen F, et al. Lipidomic profiling reveals lipid regulation in the snow alga Chlamydomonas nivalis in response to nitrate or phosphate deprivation. Process Biochem. 2013;48(4):605–13.

    Article  CAS  Google Scholar 

  • Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv. 2013;31(8):1532–42.

    Article  CAS  PubMed  Google Scholar 

  • Martin GJ, Hill DR, Olmstead IL, et al. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One. 2014;9(8):e103389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthijs M, Fabris M, Broos S, et al. Profiling of the early nitrogen stress response in the diatom Phaeodactylum tricornutum reveals a novel family of RING-domain transcription factors. Plant Physiol. 2016;170(1):489–98.

    Article  CAS  PubMed  Google Scholar 

  • McClure DD, Luiz A, Gerber B, et al. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res. 2018;29:41–8.

    Article  Google Scholar 

  • Minhas AK, Hodgson P, Barrow CJ, et al. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol. 2016;7:546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naduthodi MIS, Barbosa MJ, van der Oost J. Progress of CRISPR-Cas based genome editing in photosynthetic microbes. Biotechnol J. 2018;13:e1700591. https://doi.org/10.1002/biot.201700591.

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan S, Chou SK, Cao S, et al. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol. 2013;145:150–6.

    Article  CAS  PubMed  Google Scholar 

  • Ngan CY, Wong CH, Choi C, et al. Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nat Plants. 2015;1:15107.

    Article  CAS  PubMed  Google Scholar 

  • Nogueira DPK, Silva AF, Araújo OQF, et al. Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass Bioenergy. 2014;72:280–7.

    Article  CAS  Google Scholar 

  • Pancha I, Chokshi K, Maurya R, et al. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol. 2015;189:341–8.

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Wei D, Chen G, et al. Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169. Biotechnol Biofuels. 2016;9:151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perrineau MM, Zelzion E, Gross J, et al. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii. Environ Microbiol. 2014;16(6):1755–66.

    Article  CAS  PubMed  Google Scholar 

  • Praveenkumar R, Kim B, Lee J, et al. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp. Bioresour Technol. 2016;220:661–5.

    Article  CAS  PubMed  Google Scholar 

  • Remmers IM, Martens DE, Wijffels RH, et al. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities. PLoS One. 2017;12(4):e0175630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren HY, Liu BF, Kong F, et al. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresour Technol. 2014;169:763–7.

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102(1):100–12.

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 2001;15:2122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeki K, Aburai N, Aratani S, et al. Salt-stress and plant hormone-like responses for selective reactions of esterified xanthophylls in the aerial microalga Coelastrella sp. KGU-Y002. J Appl Phycol. 2016;29(1):115–22.

    Article  CAS  Google Scholar 

  • Santos AM, Janssen M, Lamers PP, et al. Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour Technol. 2012;104:593–9.

    Article  CAS  PubMed  Google Scholar 

  • Shang C, Bi G, Yuan Z, et al. Discovery of genes for production of biofuels through transcriptome sequencing of Dunaliella parva. Algal Res. 2016;13:318–26.

    Article  Google Scholar 

  • Shang C, Zhu S, Wang Z, et al. Proteome response of Dunaliella parva induced by nitrogen limitation. Algal Res. 2017;23:196–202.

    Article  Google Scholar 

  • Shemesh Z, Leu S, Khozin-Goldberg I, et al. Inducible expression of Haematococcus oil globule protein in the diatom Phaeodactylum tricornutum: association with lipid droplets and enhancement of TAG accumulation under nitrogen starvation. Algal Res. 2016;18:321–31.

    Article  Google Scholar 

  • Shen XF, Chu FF, Lam PKS, et al. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res. 2015;81:294–30.

    Article  CAS  PubMed  Google Scholar 

  • Skrupski B, Wilson KE, Goff KL, et al. Effect of pH on neutral lipid and biomass accumulation in microalgal strains native to the Canadian prairies and the Athabasca oil sands. J Appl Phycol. 2012;25(4):937–49.

    Article  CAS  Google Scholar 

  • Srivastava G, Nishchal, Goud VV. Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresour Technol. 2017;242:244–52.

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Song K, Zhang P, et al. Progress of microalgae biofuel’s commercialization. Renew Sust Energ Rev. 2017;74:402–11.

    Article  Google Scholar 

  • Subhash GV, Rohit MV, Devi MP, et al. Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater. Bioresour Technol. 2014;169:789–93.

    Article  CAS  Google Scholar 

  • Sun X, Cao Y, Xu H, et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol. 2014;155:204–12.

    Article  CAS  PubMed  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A. 2013;110(49):19748–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CH, Warakanont J, Takeuchi T, et al. The protein compromised hydrolysis of triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci U S A. 2014;111(44):15833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieler A, Wu G, Tsai CH, et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 2012;8(11):e1003064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vítová M, Goecke F, Sigler K, et al. Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH. Algal Res. 2016;13:218–26.

    Article  Google Scholar 

  • Wan C, Bai F-W, Zhao X-Q. Effects of nitrogen concentration and media replacement on cell growth and lipid production of oleaginous marine microalga Nannochloropsis oceanica DUT01. Biochem Eng J. 2013;78:32–8.

    Article  CAS  Google Scholar 

  • Wang D, Ning K, Li J, et al. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet. 2014;10(1):e1004094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Peng X, Wang J, et al. A β-carotene ketolase gene (bkt1) promoter regulated by sodium acetate and light in a model green microalga Chlamydomonas reinhardtii. Algal Res. 2016a;20:61–9.

    Article  Google Scholar 

  • Wang T, Ge H, Liu T, et al. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. J Biotechnol. 2016b;228:18–27.

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science. 2010;329(5993):796–9.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zhou J, Xin Y, et al. Nutritional stress effects under different nitrogen sources on the genes in microalga Isochrysis zhangjiangensis and the assistance of Alteromonas macleodii in releasing the stress of amino acid deficiency. J Phycol. 2015;51(5):885–95.

    Article  CAS  PubMed  Google Scholar 

  • Xi T, Kim DG, Roh SW, et al. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl Microbiol Biotechnol. 2016;100(14):6231–8.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Ho SH, Chen CN, et al. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation. Bioresour Technol. 2013;144:435–44.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Cao J, Xing G, et al. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol. 2014;175C:537–44.

    Google Scholar 

  • Yoo C, La HJ, Kim SC, et al. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation. Biotechnol Bioeng. 2015;112(2):288–96.

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Zhao Q, Miao X, et al. Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresour Technol. 2013;147:499–507.

    Article  CAS  PubMed  Google Scholar 

  • Zalogin TR, Pick U. Azide improves triglyceride yield in microalgae. Algal Res. 2014;3:8–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Qing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wan, C., Chen, BL., Zhao, XQ., Bai, FW. (2019). Stress Response of Microalgae and Its Manipulation for Development of Robust Strains. In: Alam, M., Wang, Z. (eds) Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_5

Download citation

Publish with us

Policies and ethics