Skip to main content

Upper Limb Prosthesis for Patients with Congenital or Acquired Deformity

  • Conference paper
  • First Online:
XXVI Brazilian Congress on Biomedical Engineering

Abstract

A prototype of an upper limb prosthesis with a single control is presented in this paper. The prosthesis has 16 degrees of freedom, five fingers with independent joints and articulations in the hand’s palm, being able to reproduce movements of anthropomorphic and anthropometric joints and holds. A sensorized glove was used to generate a database for the bionic hand, with different types of movements. Tests were performed on volunteers with congenital and acquired deformities. The results showed that the upper limb prosthesis works adequately with both types of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aires, M.M.: Fisiologia, 4th edn. Guanabara Koogan, Rio de Janeiro (1991)

    Google Scholar 

  2. Tanrikulu, S., et al.: Anatomy and biomechanics of the wrist and hand. In: Sports Injuries: Prevention, Diagnosis, Treatment and Rehabilitation, 2nd edn., pp. 441–447. Springer, Berlin (2014)

    Google Scholar 

  3. Pylatiuk, C., Schulz, S., Döderlein, L.: Results of an Internet survey of myoelectric prosthetic hand users. Prosthet. Orthot. Int. 34(4), 362–370 (2008)

    Article  Google Scholar 

  4. Sureshbabu, A.V., Metta, G., Parmiggiani, A.: A new cost effective robot hand for the iCub humanoid. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 750–757. Seoul (2015)

    Google Scholar 

  5. Nguyen, H.: Perceptual and comparative analyses of a passive, linear, multiple degree-of-freedom skin stretch device for proprioceptive substitution. M.S. dissertation, Dept. Aerospace Eng., Univ. of Illinois at Urbana-Champaign, Champaign, Illinois (2015)

    Google Scholar 

  6. Zuniga, J., et al.: Cyborg beast: a low-cost 3D-printed prosthetic. BMC Res. Notes 8(10) (2015)

    Google Scholar 

  7. Polisiero, M., et al.: Design and assessment of a low-cost, electromyographically controlled, prosthetic hand. Med. Dev.: Evid. Res. 6(4), 97–104 (2013)

    Google Scholar 

  8. Simmons, L.P., Welsh, J.S.: Compact human-machine interface using surface electromyography. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 206–211. Wollongong (2013)

    Google Scholar 

  9. Abid, M.R., et al.: Dynamic hand gesture recognition for human-robot and inter-robot communication. In: IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pp. 12–17. Ottawa (2014)

    Google Scholar 

  10. Villoslada, A., et al.: High-displacement fast-cooling flexible Shape Memory Alloy actuator: Application to an anthropomorphic robotic hand. In: 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 27–32. Madrid (2014)

    Google Scholar 

  11. O’neill, C.: An advanced, low cost prosthetic arm. In: IEEE SENSORS 2014 Proceedings, pp. 494–498. Valencia (2014)

    Google Scholar 

  12. Fajardo, J., Lemus, A., Rohmer, E.: Galileo bionic hand: sEMG activated approaches for a multifunction upper-limb prosthetic. In: 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), pp. 1–6. Tegucigalpa (2015)

    Google Scholar 

  13. Xavier, R.T., Xavier, P.T., Souza, R.M.: Aplicações com Arduino em eletrodinâmica e biomecânica para comunicação de um mecanismo biônico por comando de voz: protótipo para prótese de membro superior. In: XIII Congresso Nacional de Iniciação Científica, p. 6. Campinas (2013)

    Google Scholar 

  14. Hunold, M., et al.: Protótipo de Prótese de Mão Robótica de Lego Controlada por Sistema Android para Bi-Amputado. In: XXIV Congresso Brasileiro de Engenharia Biomédica, pp. 2452–2455. Uberlândia (2014)

    Google Scholar 

  15. Stoppa, M.H., Carvalho, J.C.M.: Kinematic modeling of a multi-fingered hand prosthesis. In: Congresso Nacional de Matemática Aplicada à Industria, p. 10. Caldas Novas (2015)

    Google Scholar 

  16. Langevin, G.: InMoov Open Source 3D Printed Life-Size Robot. http://inmoov.fr/. Accessed 25 Apr 2018

  17. Xavier, R.T., et al.: Desenvolvimento de uma Mão Biônica e de um Sistema Eletrônico para Estudo dos Movimentos da Mão. In: VIII Congreso Iberoamericano de Tecnologias de Apoyo a la Discapacidad (IBERDISCAP), pp. 211–214. Punta Arenas (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Taoni Xavier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xavier, R.T. et al. (2019). Upper Limb Prosthesis for Patients with Congenital or Acquired Deformity. In: Costa-Felix, R., Machado, J., Alvarenga, A. (eds) XXVI Brazilian Congress on Biomedical Engineering. IFMBE Proceedings, vol 70/1. Springer, Singapore. https://doi.org/10.1007/978-981-13-2119-1_111

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2119-1_111

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2118-4

  • Online ISBN: 978-981-13-2119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics