Skip to main content

Star Hotel Hospitality Load Balancing Technique in Cloud Computing Environment

  • Conference paper
  • First Online:
Advances in Big Data and Cloud Computing

Abstract

Cloud computing technology is making advancement recently. Automated service provisioning, load balancing, virtual machine task migration, algorithm complexity, resource allocation, and scheduling are used to make improvements in the quality of service in the cloud environment. Load balancing is an NP-hard problem. The main objective of the proposed work is to achieve low makespan and minimum task execution time. An experimental result proved that the proposed algorithm performs good load balancing than Firefly algorithm, Honey Bee Behavior-inspired Load Balancing (HBB-LB), and Particle Swarm Optimization (PSO) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joshi, G., Verma, S.K.: Load balancing approach in cloud computing using improvised genetic algorithm: a soft computing approach. Int. J. Comput. Appl. 122(9), 24–28 (2015)

    Google Scholar 

  2. Mahmoud, M.M.E.A., Shen, X.: A cloud-based scheme for protecting source-location privacy against hotspot-locating attack in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 23(10), 1805–1818 (2012)

    Article  Google Scholar 

  3. Tang, Q., Gupta, S.K.S., Varsamopoulos, G.: Energy-efficient thermal-aware task scheduling for homogeneous high performance computing data centers: a cyber-physical approach. IEEE Trans. Parallel Distrib. Syst. 19(11), 1458–1472 (2008)

    Article  Google Scholar 

  4. TSai, P.W., Pan, J.S., Liao, B.Y.: Enhanced artificial bee colony optimization. Int. J. Innov. Comput. Inf. Control 5(12), 5081–5092 (2009)

    Google Scholar 

  5. Kashyap, D., Viradiya, J.: A survey of various load balancing algorithms in cloud computing. Int. J. Sci. Technol. 3(11), 115–119 (2014)

    Google Scholar 

  6. Zhu, H., Liu, T., Zhu, D., Li, H.: Robust and simple N-Party entangled authentication cloud storage protocol based on secret sharing scheme. J. Inf. Hiding Multimedia Signal Process. 4(2), 110–118 (2013)

    Google Scholar 

  7. Chang, B., Tsai, H.-F., Chen, C.-M.: Evaluation of virtual machine performance and virtualized consolidation ratio in cloud computing system. J. Inf. Hiding Multimedia Signal Process. 4(3), 192–200 (2013)

    Google Scholar 

  8. Florence, A.P., Shanthi, V.: A load balancing model using firefly algorithm in cloud computing. J. Comput. Sci. 10(7), 1156 (2014)

    Article  Google Scholar 

  9. Polepally, V., Shahu Chatrapati, K.: Dragonfly optimization and constraint measure based load balancing in cloud computing. Cluster Comput. 20(2), 1–13 (2017)

    Google Scholar 

  10. Mei, J., Li, K., Li, K.: Energy-aware task scheduling in heterogeneous computing environments. Cluster Comput. 17(2), 537–550 (2014)

    Article  Google Scholar 

  11. Kaur, P., Kaur, P.D.: Efficient and enhanced load balancing algorithms in cloud computing. Int. J. Grid Distrib. Comput. 8(2), 9–14 (2015)

    Article  Google Scholar 

  12. Chen, S.-L., Chen, Y.-Y., Kuo, S.-H.: CLB: a novel load balancing architecture and algorithm for cloud services. Comput. Electr. Eng. 56(2), 154–160 (2016)

    Google Scholar 

  13. Priyadarsini, R.J., Arockiam, L.: Performance evaluation of min-min and max-min algorithms for job scheduling in federated cloud. Int. J. Comput. Appl. 99(18), 47–54 (2014)

    Google Scholar 

  14. Pacini, E., Mateos, C., García Garino, C.: Dynamic scheduling based on particle swarm optimization for cloud-based scientific experiments. CLEI Electron. J. 17(1), 3–13 (2014)

    Article  Google Scholar 

  15. Chen, S.-L., Chen, Y.-Y., Kuo, S.-H.: CLB: a novel load balancing architecture and algorithm for cloud services. Comput. Electr. Eng. 58(1), 154–160 (2016)

    Google Scholar 

  16. Aruna, M., Bhanu, D., Karthik, S.: An improved load balanced metaheuristic scheduling in cloud. Cluster Comput. 5(7), 1107–1111 (2015)

    Google Scholar 

  17. Dhinesh Babu, L.D., Venkata Krishna, P.: Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl. Soft Comput. 13(5), 2292–2303 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sakthivelmurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakthivelmurugan, V., Vimala, R., Aravind Britto, K.R. (2019). Star Hotel Hospitality Load Balancing Technique in Cloud Computing Environment. In: Peter, J., Alavi, A., Javadi, B. (eds) Advances in Big Data and Cloud Computing. Advances in Intelligent Systems and Computing, vol 750. Springer, Singapore. https://doi.org/10.1007/978-981-13-1882-5_10

Download citation

Publish with us

Policies and ethics