Skip to main content

Next-Generation Sequencing: Technology, Advancements, and Applications

  • Chapter
  • First Online:
Bioinformatics: Sequences, Structures, Phylogeny

Abstract

The invention of next-generation sequencing (NGS) platforms leads to unprecedented growth of sequence data which is used in many areas including biomedical, agriculture, and basic research. The low cost and high efficiency are the key to success of NGS technologies over traditional sequencing methods which include Sanger’s chain termination method and Maxam-Gilbert’s chemical degradation method. In present scenario, these methods have been replaced by NGS technologies and applied to a variety of genomes ranging from singular to multicellular organisms. Considering the importance of sequencing in biological experiments, the present chapter focuses on the evolution of sequencing generations and the role of bioinformatics in the development of NGS data analysis pipeline. Moreover, the applications of NGS in genomics, transcriptomics, and biological and biomedical research have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ et al (2000) Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 28:E87

    Article  CAS  Google Scholar 

  • Aggarwal S, Gheware A, Agrawal A, Ghosh S, Prasher B, Mukerji M (2015) Combined genetic effects of EGLN1 and VWF modulate thrombotic outcome in hypoxia revealed by Ayurgenomics approach. J Transl Med 13:184

    Article  Google Scholar 

  • Anderson S (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res 9:3015–3027

    Article  CAS  Google Scholar 

  • Ansorge W, Sproat BS, Stegemann J, Schwager C (1986) A non-radioactive automated method for DNA sequence determination. J Biochem Biophys Methods 13:315–323

    Article  CAS  Google Scholar 

  • Ansorge W, Sproat B, Stegemann J, Schwager C, Zenke M (1987) Automated DNA sequencing: ultrasensitive detection of fluorescent bands during electrophoresis. Nucleic Acids Res 15:4593–4602

    Article  CAS  Google Scholar 

  • Astier Y, Braha O, Bayley H (2006) Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J Am Chem Soc 128:1705–1710

    Article  CAS  Google Scholar 

  • Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K et al (2014) RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res 24:1765–1773

    Article  CAS  Google Scholar 

  • Bayley H (2010) Nanotechnology: holes with an edge. Nature 467:164–165

    Article  CAS  Google Scholar 

  • Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630

    Article  CAS  Google Scholar 

  • Bowers J, Mitchell J, Beer E, Buzby PR, Causey M et al (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6:593–595

    Article  CAS  Google Scholar 

  • Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691

    Article  CAS  Google Scholar 

  • Brunner AL, Beck AH, Edris B, Sweeney RT, Zhu SX et al (2012) Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol 13:R75

    Article  Google Scholar 

  • Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941

    Article  CAS  Google Scholar 

  • Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE (2013) The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn 33:667–674

    Article  CAS  Google Scholar 

  • Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M et al (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:608–611

    Article  CAS  Google Scholar 

  • Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘biofuel’. Appl Microbiol Biotechnol 89:1289–1303

    Article  CAS  Google Scholar 

  • Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307

    Article  CAS  Google Scholar 

  • Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM et al (2014) The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158:1187–1198

    Article  CAS  Google Scholar 

  • Consortium GP (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  Google Scholar 

  • Cram DS, Zhou D (2016) Next generation sequencing: coping with rare genetic diseases in China. Intract Rare Dis Res 5:140–144

    Article  Google Scholar 

  • David Al Dulaimi M (2015) The role of infectious mediators and gut microbiome in the pathogenesis of celiac disease. Arch Iran Med 18:244

    PubMed  Google Scholar 

  • Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A 107:16060–16065

    Article  CAS  Google Scholar 

  • Eckhardt F, Beck S, Gut IG, Berlin K (2004) Future potential of the human epigenome project. Expert Rev Mol Diagn 4:609–618

    Article  CAS  Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921

    Article  CAS  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  Google Scholar 

  • Flint HJ, Duncan SH, Louis P (2014) Gut microbiome and obesity. In: Treatment of the obese patient. Springer, New York, pp 73–82

    Google Scholar 

  • Fonseca NA, Rung J, Brazma A, Marioni JC (2012) Tools for mapping high-throughput sequencing data. Bioinformatics 28:3169–3177

    Article  CAS  Google Scholar 

  • Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM et al (2008) Improved fabrication of zero-mode waveguides for single-molecule detection. J Appl Phys 103:034301

    Article  Google Scholar 

  • Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T et al (2009) The challenges of sequencing by synthesis. Nat Biotechnol 27:1013–1023

    Article  CAS  Google Scholar 

  • Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852

    Article  CAS  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  Google Scholar 

  • Gordon D, Huddleston J, Chaisson MJ, Hill CM, Kronenberg ZN et al (2016) Long-read sequence assembly of the gorilla genome. Science 352:aae0344

    Article  Google Scholar 

  • Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and application. J Invest Dermatol 133:e11

    Article  Google Scholar 

  • Gut IG (2013) New sequencing technologies. Clini Transl Oncol Off Publ Fed Span Oncol Soc Nat Cancer Inst Mex 15:879–881

    CAS  Google Scholar 

  • Haque F, Li J, Wu HC, Liang XJ, Guo P (2013) Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 8:56–74

    Article  CAS  Google Scholar 

  • Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8

    Article  CAS  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  CAS  Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    Article  CAS  Google Scholar 

  • Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80

    Article  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770–13773

    Article  CAS  Google Scholar 

  • Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38

    Article  CAS  Google Scholar 

  • Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM et al (2013) Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 14:R101

    Article  Google Scholar 

  • Korlach J, Bibillo A, Wegener J, Peluso P, Pham TT et al (2008a) Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleosides Nucleotides Nucleic Acids 27:1072–1083

    Article  CAS  Google Scholar 

  • Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL et al (2008b) Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A 105:1176–1181

    Article  CAS  Google Scholar 

  • Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499

    Article  CAS  Google Scholar 

  • Lan JH, Zhang Q (2015) Clinical applications of next-generation sequencing in histocompatibility and transplantation. Curr Opin Organ Transplant 20:461–467

    Article  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  Google Scholar 

  • Lavery TJ, Roudnew B, Seymour J, Mitchell JG, Jeffries T (2012) High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca cinerea) faeces. PLoS One 7:e36478

    Article  CAS  Google Scholar 

  • Lee H, Gurtowski J, Yoo S, Nattestad M, Marcus S et al (2016) Third-generation sequencing and the future of genomics. bioRxiv:048603

    Google Scholar 

  • Lelieveld SH, Veltman JA, Gilissen C (2016) Novel bioinformatic developments for exome sequencing. Hum Genet 135:603–614

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  • Liu H, He J, Tang J, Liu H, Pang P et al (2010) Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327:64–67

    Article  CAS  Google Scholar 

  • Liu L, Li Y, Li S, Hu N, He Y et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364

    PubMed  PubMed Central  Google Scholar 

  • Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733–735

    Article  CAS  Google Scholar 

  • Long A, Liti G, Luptak A, Tenaillon O (2015) Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat Rev Genet 16:567–582

    Article  CAS  Google Scholar 

  • Mardis ER (2006) Anticipating the 1,000 dollar genome. Genome Biol 7:112

    Article  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  Google Scholar 

  • Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564

    Article  CAS  Google Scholar 

  • McGinn S, Gut IG (2013) DNA sequencing – spanning the generations. New Biotechnol 30:366–372

    Article  CAS  Google Scholar 

  • McNally B, Singer A, Yu Z, Sun Y, Weng Z, Meller A (2010) Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett 10:2237–2244

    Article  CAS  Google Scholar 

  • Messier TL, Gordon JA, Boyd JR, Tye CE, Browne G et al (2016) Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget 7:5094–5109

    Article  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  • Mills L (2014) Common file formats. Current Protocols in Bioinformatics 45:A 1B 1–A 1B18

    PubMed  Google Scholar 

  • Morey M, Fernandez-Marmiesse A, Castineiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110:3–24

    Article  CAS  Google Scholar 

  • Morrison M, Pope PB, Denman SE, McSweeney CS (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol 20:358–363

    Article  CAS  Google Scholar 

  • Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83:4327–4341

    Article  CAS  Google Scholar 

  • Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N et al (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinf Biol Insights 9:75–88

    Article  CAS  Google Scholar 

  • Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM et al (2011) DNA sequencing of maternal plasma to detect down syndrome: an international clinical validation study. Genet Med 13:913–920

    Article  CAS  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    Article  CAS  Google Scholar 

  • Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O et al (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods 12:780–786

    Article  CAS  Google Scholar 

  • Pettersson E, Lundeberg J, Ahmadian A (2009) Generations of sequencing technologies. Genomics 93:105–111

    Article  CAS  Google Scholar 

  • Rabbani B, Tekin M, Mahdieh N (2014) The promise of whole-exome sequencing in medical genetics. J Hum Genet 59:5–15

    Article  CAS  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124

    Article  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:R227–R240

    Article  CAS  Google Scholar 

  • Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:3163–3167

    Article  CAS  Google Scholar 

  • Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326

    Article  CAS  Google Scholar 

  • Service RF (2006) Gene sequencing. The race for the $1000 genome. Science 311:1544–1546

    Article  Google Scholar 

  • Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630

    Article  CAS  Google Scholar 

  • Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31:1009–1014

    Article  CAS  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  CAS  Google Scholar 

  • Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679

    Article  CAS  Google Scholar 

  • Soto J, Rodriguez-Antolin C, Vallespin E, de Castro CJ, Ibanez de Caceres I (2016) The impact of next-generation sequencing on the DNA methylation-based translational cancer research. Transl Res J Lab Clin Med 169(1–18):e11

    Google Scholar 

  • The GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585

    Article  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  Google Scholar 

  • Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    Article  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804

    Article  CAS  Google Scholar 

  • Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S et al (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063

    Article  CAS  Google Scholar 

  • Van Verk MC, Hickman R, Pieterse CM, Van Wees SC (2013) RNA-Seq: revelation of the messengers. Trends Plant Sci 18:175–179

    Article  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  Google Scholar 

  • Venter JC, Smith HO, Adams MD (2015) The sequence of the human genome. Clin Chem 61:1207–1208

    Article  CAS  Google Scholar 

  • Wang Y, Navin NE (2015) Advances and applications of single-cell sequencing technologies. Mol Cell 58:598–609

    Article  CAS  Google Scholar 

  • Watson M (2014) Quality assessment and control of high-throughput sequencing data. Front Genet 5:235

    Article  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  Google Scholar 

  • Whiteford N, Skelly T, Curtis C, Ritchie ME, Lohr A et al (2009) Swift: primary data analysis for the Illumina Solexa sequencing platform. Bioinformatics 25:2194–2199

    Article  CAS  Google Scholar 

  • Xing M-N, Zhang X-Z, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30:920–929

    Article  CAS  Google Scholar 

  • Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics 12:190–197

    Article  Google Scholar 

  • Zhao Q, Wang Y, Dong J, Zhao L, Rui X, Yu D (2012) Nanopore-based DNA analysis via graphene electrodes. J Nanomater 2012:4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, G., Narta, K., Teltumbade, M.R. (2018). Next-Generation Sequencing: Technology, Advancements, and Applications. In: Shanker, A. (eds) Bioinformatics: Sequences, Structures, Phylogeny . Springer, Singapore. https://doi.org/10.1007/978-981-13-1562-6_2

Download citation

Publish with us

Policies and ethics