Skip to main content

A Review on Magnetic Resonance Images Denoising Techniques

  • Conference paper
  • First Online:
Machine Intelligence and Signal Analysis

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 748))

Abstract

Medical image denoising is a very important and challenging area in the field of image processing. Magnetic resonance imaging is a very popular and most effective imaging technique. During the acquisition, MR images get affected by random noise which could be modeled as Gaussian or Rician distribution. In the past few decades, a wide variety of denoising techniques have been proposed. This paper presents a survey of advancements proposed for the denoising of magnetic resonance images. The performance of most significant image denoising domains has been analyzed qualitatively as well as quantitatively on the basis of mean square error and peak signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angenent, S., Pichon, E., Tannenbaum, A.: Mathematical methods in medical image processing. Bull. (New Ser.) Am. Math. Soc. (2005)

    Google Scholar 

  2. Roentgen, W.C.: Ueber eine neue Art von Strahlen. Ann. Phys. 64, 1–37 (1898)

    Article  Google Scholar 

  3. http://www.ctscaninfo.com/mrivsctscan.html

  4. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Google Scholar 

  5. Mohana∗, J., Krishnavenib, V., Guoca, Y.: A survey on the magnetic resonance image denoising methods. Biomed. Signal Process. Control 9, 56–69 (2014)

    Google Scholar 

  6. Weaver, J.B., Xu, Y., Healy, D.M., Cromwell, L.D.: Filtering noise from images withwavelet transforms. Magn. Reson. Imaging 21, 288–295 (1991)

    Google Scholar 

  7. Nowak, R.D.: Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans. Image Process. 8, 1408–1419 (1999)

    Article  Google Scholar 

  8. Wood, J.C., Johnson, K.M.: Wavelet packet denoising of magnetic resonanceimages: importance of Rician noise at low SNR. Magn. Reson. Med. 41, 631–635 (1999)

    Article  Google Scholar 

  9. Zaroubi, S., Goelman, G.: Complex denoising of MR data via wavelet analysis:application for functional MRI. Magn. Reson. Imaging 18, 59–68 (2000)

    Article  Google Scholar 

  10. Alexander, M.E., Baumgartner, R., Summers, A.R., Windischberger, C., Klarhoefer, M., Moser, E., Somorjai, R.L.: A wavelet-based method for improvingsignal-to-noise ratio and contrast in MR images. Magn. Reson. Imaging 18, 169–180 (2000)

    Article  Google Scholar 

  11. Bao, P., Zhang, L.: Noise reduction for magnetic resonance images via adap-tive multiscale products thresholding. IEEE Trans. Med. Imaging 22, 1089–1099 (2003)

    Article  Google Scholar 

  12. Placidi, G., Alecci, M., Sotgiu, A.: Post-processing noise removal algorithm formagnetic resonance imaging based on edge detection and wavelet analysis. Phys. Med. Biol. 48, 1987–1995 (2003)

    Article  Google Scholar 

  13. Yu, H., Zhao, L.: An efficient denoising procedure for magnetic resonance imaging. In: Proceedings of IEEE 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 2628–2630 (2008)

    Google Scholar 

  14. Tan,L., Shi, L.: Multiwavelet-based estimation for improving magnetic reso-nance images. In: Proceedings of IEEE Conference, pp. 1–5 (2009)

    Google Scholar 

  15. Wu, Z.Q., Ware, J.A., Jiang, J.: Wavelet-based Rayleigh background removal inMRI. IEEE Electron. Lett. 39, 603–605 (2003)

    Article  Google Scholar 

  16. Starck, J.L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denois-ing. IEEE Trans. Image Process. 11, 670–684 (2002)

    Article  MathSciNet  Google Scholar 

  17. Ma, J., Plonka, G.: Combined curvelet shrinkage and nonlinear anisotropic dif-fusion. IEEE Trans. Image Process. 16, 2198–2206 (2007)

    Article  MathSciNet  Google Scholar 

  18. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional mul-tiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)

    Article  Google Scholar 

  19. Jiang, L., Yang, W.: Adaptive magnetic resonance image denoising using mixture model and wavelet shrinkage. In: Sun, C., Talbot, H., Ourselin, S., Adriaansen, T. (eds.) Proceedings of VIIth Digital Image Computing: Techniques and Applications, The University of Queensland, Sydney, Australia. St. Lucia, Australia, pp. 831–838 (2003)

    Google Scholar 

  20. Sijbers, J., Poot, D., den Dekker, A.J., Pintjenst, W.: Automatic estimation of thenoise variance from the histogram of a magnetic resonance image. Phys. Med. Biol. 52, 1335–1348 (2007)

    Article  Google Scholar 

  21. Rajan, J., Poot, D., Juntu, J., Sijbers, J.: Noise measurement from magnitude MRI using local estimates of variance and skewness. Phys. Med. Biol. 55, 441–449 (2010)

    Article  Google Scholar 

  22. Rajan, J., Jeurissen, B., Verhoye, M., Audekerke, J.V., Sijbers, J.: Maximum like-lihood estimation-based denoising of magnetic resonance images usingrestriced local neighborhoods. Phys. Med. Biol. 56, 5221–5234 (2011)

    Article  Google Scholar 

  23. Aja-Fernández, S., Alberola-López, C., Westin, C.F.: Noise and signal estimationin magnitude MRI and Rician distributed images: a LMMSE approach. IEEETrans. Image Process. 17, 1383–1398 (2008)

    Article  Google Scholar 

  24. Golshan, H.M., Hasanzedeh, R.P.R., Yousefzadeh, S.C.: An MRI denoising method using data redundancy and local SNR estimation. Magn. Reson. Imaging 31, 1206–1217 (2013)

    Article  Google Scholar 

  25. Tisdall, D., Atkins, M.S.: MRI denoising via phase error estimation. Proc. SPIE 5747, 646–654 (2005)

    Google Scholar 

  26. McVeigh, E.R., Henkelman, R.M., Bronskill, M.J.: Noise and filtration in magnetic resonance imaging. Med. Phys. 12, 586–591 (1985)

    Article  Google Scholar 

  27. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  28. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Presented at the 6th International Conference Computer Vision, Bombay, India, pp. 839–846 (1998)

    Google Scholar 

  29. Coupe, P., Yger, P., Barillot, C.: Fast non local means denoising for 3D MR images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 33–40 (2006)

    Google Scholar 

  30. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4) (2008)

    Google Scholar 

  31. Manjon, J.V., Coupe, P., Buades, A., Louis Collins, D., Robles, M.: New methods for MRI denoising based on sparseness and self-similarity. Med. Image Anal. 16(1), 8–27 (2012)

    Google Scholar 

  32. Coupe, P., Manjon, J.V., Robles, M., Collins, D.L.: Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising. IET Image Process. 6(5), 558–568 (2012)

    Google Scholar 

  33. Rajan, J., den Dekker, A.J., Sijbers, J.: A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov–Smirnov test. Signal Process. 103, 16–23 (2014)

    Google Scholar 

  34. Kim, D.W., Kim, C., Kim, D.H., Lim, D.H.: Rician nonlocal means denoising for MR images using nonparametric principal component analysis. EURASIP J. Image Video Process. (2011)

    Google Scholar 

  35. http://brainweb.bic.mni.mcgill.ca/brainweb

  36. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Chaurasia, V. (2019). A Review on Magnetic Resonance Images Denoising Techniques. In: Tanveer, M., Pachori, R. (eds) Machine Intelligence and Signal Analysis. Advances in Intelligent Systems and Computing, vol 748. Springer, Singapore. https://doi.org/10.1007/978-981-13-0923-6_60

Download citation

Publish with us

Policies and ethics